Preprint has been published in a journal as an article
Preprint / Version 1

Social Network Analysis of BSI Data Leakage Using Naive Bayes, Support Vector Machine (SVM), and Random Forest Classification Algorithms


Social Network Analysis Terhadap Kebocoran Data BSI Menggunakan Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest

##article.authors##

DOI:

https://doi.org/10.21070/ups.4132

Keywords:

Sentiment Analysis, Random Forest, Support Vector Machine, Naive Bayes, Bsi Data Leak

Abstract

This research aims to design a sentiment analysis detection system in the context of the BSI bank digital data hacking case. The main focus of the research is to compare the performance of three different classification algorithms, namely Random Forest, Naive Bayes, and Support Vector Machine (SVM), which were used to analyze sentiment in the BSI bank digital data hacking case. The data collected was 24,000 tweets, with neutral sentiment reaching 83.86%, negative sentiment 8.43%, and positive sentiment 7.71%. The evaluation results show that the Support Vector Machine classification algorithm has the highest accuracy in identifying sentiment in tweet data related to BSI, namely 95.72%. Meanwhile, Naive Bayes has an accuracy of 89.73%, and Random Forest reaches 95.7%. This research provides a deep understanding of sentiment analysis, especially in the context of data leaks in the digital era.

Downloads

Download data is not yet available.

References

A. Faulina, E. Chatra, and S. Sarmiati, “Peran buzzer dan konstruksi pesan viral dalam proses pembentukan opini publik di new media,” JRTI (Jurnal Riset Tindakan Indonesia), vol. 7, no. 1, p. 1, Jan. 2020, doi: 10.29210/30031390000.

R. Milafebina, I. Putra Lesmana, and M. R. Syailendra, “Perlindungan Data Pribadi terhadap Kebocoran Data Pelanggan E-commerence di Indonesia.” [Online]. Available: https://ojs.staialfurqan.ac.id/jtm/

D. Yanti Liliana, R. Arnanda, A. Ilham Adnan, and dan Hilda Yuliastuti, “Policy Brief-Penguatan Implementasi Regulasi Perlindungan Data Pribadi Bagi Pelanggan Lokapasar di Indonesia,” 2023.

H. Atsqalani, N. Hayatin, and C. S. K. Aditya, “Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking,” Jurnal Online Informatika, vol. 7, no. 1, p. 116, Jun. 2022, doi: 10.15575/join.v7i1.669.

A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “SENTIMEN ANALISIS PUBLIK TERHADAP KEBIJAKAN LOCKDOWN PEMERINTAH JAKARTA MENGGUNAKAN ALGORITMA SVM,” JDMSI, vol. 2, no. 1, pp. 31–37, 2021, [Online]. Available: https://t.co/NfhnfMjtXw

D. Sepri, P. Algoritma, N. Bayes, U. Analisis, K. Penggunaan, and A. Bank, “Penerapan Algoritma Naïve Bayes Untuk Analisis Kepuasan Penggunaan Aplikasi Bank,” Journal of Computer System and Informatics (JoSYC, vol. 2, no. 1, pp. 135–139, 2020.

D. Alita and R. A. Shodiqin, “Sentimen Analisis Vaksin Covid-19 Menggunakan Naive Bayes Dan Support Vector Machine,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 1–12, Feb. 2023, doi: 10.58602/jaiti.v1i1.20.

N. Faridhotun, E. Haerani, and R. M. Candra, “Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor,” Journal of Information System Research (JOSH), vol. 4, no. 3, pp. 855–864, Apr. 2023, doi: 10.47065/josh.v4i3.3349.

I. S. Dianita, H. Irawan, and A. Deah, “PERAN BANK SYARIAH INDONESIA DALAM PEMBANGUNAN EKONOMI NASIONAL,” vol. 3, no. 2, p. 2021, [Online]. Available: http://journal.iaimsinjai.ac.id/index.php/asy-syarikah

V. Marcelliana et al., “PENERAPAN PERLINDUNGAN KONSUMEN TERHADAP NASABAH PT. BANK SYARIAH INDONESIA DALAM KASUS KEBOCORAN DATA NASABAH,” vol. 1, no. 2, pp. 180–194, 2023, doi: 10.59581/deposisi.v1i2.562.

A. T. Zy and W. Hadikristanto, “Implementasi Algoritma Metode Naive Bayes dan Support Vector Machine Tentang Pembobolan dan Kebocoran Data di Twitter,” Bulletin of Information Technology (BIT), vol. 4, no. 1, pp. 49–56, 2023, doi: 10.47065/bit.v3i1.

I. Najiyah and I. Haryanti, “SENTIMEN ANALISIS COVID-19 DENGAN METODE PROBABILISTICNEURAL NETWORKDAN TF-IDF,” JURNAL RESPONSIF, vol. 3, no. 1, 2021, [Online]. Available: http://ejurnal.ars.ac.id/index.php/jti

M. H. Ferdiansyah, A. Rosid, Y. Findawati, and A. Eviyanti, “Implementation of the Naive Bayes Method for Sentiment Analysis in the 2024 Presidential Election [Implementasi Metode Naïve Bayes untuk Analisis Sentimen pada Pemilihan Presiden 2024].”

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” 2020.

D. Alita and A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” 2020.

A. Rahman Hakim, W. Gata, A. Zevana Putri Widodo, O. Kurniawan, and A. Rama Syarif, “Analisis Perbandingan Algoritma Machine Learning Terhadap Sentimen Analis Pemindahan Ibu Kota Negara,” Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 2, 2023, doi: 10.35870/jti.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.

T. Terttiaavini and T. S. Saputra, “LITERASI DIGITAL UNTUK MENINGKATKAN ETIKA BERDIGITAL BAGI PELAJAR DI KOTA PALEMBANG,” JMM (Jurnal Masyarakat Mandiri), vol. 6, no. 3, p. 2155, Jun. 2022, doi: 10.31764/jmm.v6i3.8203.

D. Apriliani, A. Susanto, M. F. Hidayattullah, and G. W. Sasmito, “Sentimen Analisis Pandangan Masyarakat Terhadap Vaksinasi Covid 19 Menggunakan K-Nearest Neighbors,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 1, pp. 34–37, Jan. 2023, doi: 10.30591/jpit.v8i1.4759.

Posted

2024-02-20