Accuracy Test of K-Means in Predicting Election Participation in the Demographics of Pasuruan District Region
Uji Akurasi K - Means dalam Prediksi Partisipasi Pemilu pada Demografi Wilayah Kabupaten Pasuruan
DOI:
https://doi.org/10.21070/ups.3813Keywords:
Data Mining, K-means, Participation, Elections, PredictionsAbstract
The term Indonesia as a democratic country is legitimately echoed because Indonesia has used elections as a means to change leaders. Participation is a measure of the success of an election. This research aims to predict election participation in the demographics of Pasuruan Regency. The process of predicting or classifying using an algorithmK - Means plus evaluation model Inertia and Silhouette. The results of this research have been carried out in predicting election participation in the demographics of the Pasuruan Regency area which was carried out using the K - K - Means Algorithm with 4 variables, namely 64% election participation with 3 cluster as a comparison and research adventure with 4 cluster as much as 68% of public participation in the election.
Downloads
References
I. P. A. P. Wibawa, I. K. A. Purnawan, D. P. S. Putri, and N. K. D. Rusjayanthi, “Prediksi Partisipasi Pemilih dalam Pemilu Presiden 2014 dengan Metode Support Vector Machine,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 7, no. 3, pp. 182, 2019, doi: 10.24843/jim.2019.v07.i03.p02.
K. A. Pratama, A. Zarkasi, and Ansorullah, “Analisis Pengaturan Perlengkapan Pemungutan Suara Pemilu Ditinjau Dari Undang-Undang Tentang Pemilihan Umum,” Limbago J. Const. Law, vol. 3, no. 2, pp. 293–309, 2023.
I. Kelibay et al., “Sosialisasi Politik Sebagai Upaya Meningkatkan Partisipasi Masyarakat Menjelang Pemilu Serentak Tahun 2024,” J. Masy. Madani Indones., vol. 2, no. 4, pp. 442–449, 2023, doi: 10.59025/js.v2i4.155.
A. Handayani et al., “Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 53–63, 2023, doi: 10.47065/josh.v5i1.4379.
M. Simanjuntak, N. Nurfalinda, and ..., “Penerapan Metode Naive Bayes Untuk Memprediksi Status Kehadiran Masyarakat Dalam Pemilihan Gubernur,” Student Online J. …, pp. 152–162, 2022, [Online]. Available: https://soj.umrah.ac.id/index.php/SOJFT/article/view/1576%0Ahttps://soj.umrah.ac.id/index.php/SOJFT/article/download/1576/1398
S. D. Hilda, A. Voutama, and Y. Umaidah, “Analisis Daftar Pemilih Tetap Pemilihan Gubernur dan Wakil Gubernur menggunakan Algoritma K-Means,” JATISI (Jurnal Tek. …, vol. 10, no. 3, pp. 398–408, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/4921%0Ahttps://jurnal.mdp.ac.id/index.php/jatisi/article/download/4921/1600
A. Pambudi, “Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm) (Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022),” J. Data Min. dan Sist. Inf., vol. 4, no. 1, p. 1, 2023, doi: 10.33365/jdmsi.v4i1.2462.
M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, p. 56, 2023, doi: 10.30998/string.v8i1.16388.
M. M. abdoel Wahid, “Determining The Location Of RMU, Using K-Means Clustering, Evaluate The Location Of Existing RMU, Using R-Programming,” J. Informatics Telecommun. Eng., vol. 6, no. 1, pp. 10–17, 2022, doi: 10.31289/jite.v6i1.6126.
R. Risawandi and Y. Afrillia, “Geographic Information System Mapping Of Criminality Villed Areas In Lhokseumawe Using K-Means Method,” J. Informatics Telecommun. Eng., vol. 5, no. 2, pp. 442–451, 2022, doi: 10.31289/jite.v5i2.6265.
M. P. A. Ariawan, I. B. A. Peling, and G. B. Subiksa, “Prediksi Nilai Akhir Matakuliah Mahasiswa Menggunakan Metode K-Means Clustering (Studi Kasus : Matakuliah Pemrograman Dasar),” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 2, pp. 122–131, 2023, doi: 10.25077/teknosi.v9i2.2023.122-131.
A. S. Fitrani, F. Fajrillah, and W. Novarika, “Implementation of Data Mining Using Naïve Bayes Classification Method To Predict Participation of Governor And Vocational Governor Selection In Jemirahan Village, Jabon District,” IJICS (International J. Informatics Comput. Sci., vol. 3, no. 2, p. 66, 2019, doi: 10.30865/ijics.v3i2.1391.
A. S. Fitriani, “JTAM (Jurnal Teori dan Aplikasi Matematika) Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur,” vol. 3, no. 2, pp. 98–104, 2019, doi: 10.31764/jtam.v3i2.995.
M. N. Zarti, E. Sahputra, A. Sonita, and Y. Apridiansyah, “Application Of Data Mining Using The Naïve Bayes Classification Method To Predict Public Interest Participation In The 2024 Elections,” J. Komputer, Inf. dan Teknol., vol. 3, no. 1, pp. 105–114, 2023, doi: 10.53697/jkomitek.v3i1.1192.
D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Kernel Gaussian Rbf Untuk Prediksi Partisipasi Pemilu Terhadap Demografi Kota Surabaya,” Indones. J. Bus. Intell., vol. 5, no. 1, p. 36, 2022, doi: 10.21927/ijubi.v5i1.2259.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.