Preprint has been submitted for publication in journal
Preprint / Version 1

Implementation of the Naïve Bayes Algorithm on the Demography of Gresik District To Measure Election Participation


Implementasi Algoritma Naïve Bayes pada Demografi Kabupaten Gresik untuk Mengukur Partisipasi Pemilu

##article.authors##

DOI:

https://doi.org/10.21070/ups.3577

Keywords:

data mining, Demographics, Election, Naive Bayes, abstain

Abstract

In 1995 Indonesia held elections for the first time. In some countries, elections themselves are a way to influence decisions on how a country can be governed. However, elections themselves cannot be separated from the politics of bribery because there is a lot of competition in the political world for power. In the 2014 Presidential Election, based on KPU data, 30.42% were registered as Golput voters, namely citizens who did not exercise their right to vote during the election. The size of the election results greatly influences several factors. Like the problem that will be discussed this time, there are 3,738 data that will be processed using the Naïve Bayes method in Implementing the Demography of Gresik Regency with the highest accuracy of 62.84% which is later expected to measure election participation and become an example of improving electoral rights.

Downloads

Download data is not yet available.

References

J Bhakti, I.N., Yanuarti, S. and Nurhasim, M. (2009) Military politics, ethnicity and conflict in Indonesia. Oxford: University of Oxford. Centre for research on inequality, human security and ethnicity (CRISE). https://assets.publishing.service.gov.uk/media/57a08b7bed915d3cfd000d4a/wp62.pdf

T., K.C.S. and T., K.C.S. (2008) Hukum Tata Negara republik Indonesia: Pengertian Hukum Tata Negara Dan Perkembangan Pemerintahan Indonesia Sejak proklamasi kemerdekaan 1945 Hingga Kini. Jakarta: Rineka Cipta. https://onesearch.id/Record/IOS3774.JAKPU000000000101372.

N.H. Sardini “Pemilu di Indonesia,” dalam Restorasi Penyelenggaraan Pemilu di Indonesia, edisi pertama, Yogyakarta, 2011, 1-7.

Djuyandi Y. (2014)Efektifitas Sosialisasi Politik Pemilihan Umum Legislatif Tahun 2014 Oleh Komisi Pemilihan Umum. BJP. Tersedia https://doi.org/10.21512/humaniora.v5i2.3263

Nofriansyah D, et al (2016) Penerapan Data Mining dengan Algoritma Naive Bayes Clasfier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL (Studi kasus di CV. Sumbee Utama , Telekomunikasi). SAINTIKOM. [online] 15(2), 81-92.

Listyaningrum, S. (2015.). Penerapan Data Mining Untuk Analisis Karakteristik DPT Non-Participate sebagai Prediksi Partisipan Pemilu dengan Menggunakan Metode Naive Bayes Classifier. CORE. [Online]

Fitrani, A.S. (2019) Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur. JTAM. [Online]. 3(2), 98-104. Tersedia https://doi.org/10.31764/jtam.v3i2.995

Bayulianto S, et al. (2023) Prediksi Tingkat Kemenangan Mobile Legends Profesional League Indonesia Season o dengan Menggunkan Algoritma Naïve Bayes. JIPI. Tersedia https://doi.org/10.29100/jipi.v8i2.3562

Chowiyah, A. Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes Untuk Memprediksi Partisipasi Pemilihan Gubernur dan Wakil Gubernur di Desa Jemirahan, Kecamatan Jabon, Univ. Umsida, Sidoarjo, Indonesia, 2019.

Hikmahtiyar S. Klasifikasi Gerakan Tangan Pada Prostesis Untuk Pasien Amputasi dengan Artifical Intelligence. Univ. Airlangga, 2023.

Negoro N,K, et al (2023) Klasifikasi Deteksi Penggunaan Masker Menggunakan Metode Convolutional Neutral Network. JIPI. Tersedia https://doi.org/10.29100/jipi.v8i2.3748

Amelia, M. winny, Lumenta, A. S. ., & Jacobus, A. (2017). Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes. Jurnal Teknik Informatika, [Online] 11(1), 1-10. Tersedia https://doi.org/10.35793/jti.11.1.2017.17652

Pratiwi B,N. et al. (2020). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix. JTU. [Online] Tersedia https://doi.org/10.26877/jiu.v6i2.6552

Scikit-Learn “sklearn,metrics.confusion_matrix," 2023 [Online]. Avaliable https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html [Diakses 20 Juni 2023]

Borwnlee J. Machine Learning Mastery “How to Calculate Precision, Recall, F1and More for Deep Learning Models” 19 08 2022 [Online]. Avaliable https://machinelearningmastery.com/how-to-calculate-precision-recall-f1-and-more-for-deep-learning-models/ . [Diakses 25 September 2023]

Posted

2023-10-26