Predicting Life Expectancy of Population Using XGBoost Method
Prediksi Angka Harapan Hidup Penduduk Menggunakan Metode XGBoost
DOI:
https://doi.org/10.21070/ups.3526Keywords:
Asian Countries, Life Expectancy Prediction, XGBoostAbstract
This research aims to predict life expectancy in several Asian countries using the XGBoost Regressor algorithm. The data used is sourced from the UCI Machine Learning Repository. In this study, the researchers construct a predictive model using a machine learning approach and evaluate it based on accuracy and Mean Absolute Error (MAE). The research findings indicate that the XGBoost Regressor model achieves an accuracy rate of 96.8% in predicting life expectancy. The obtained MAE value is 0.97. These results highlight the potential of the XGBoost Regressor algorithm as an effective tool for predicting life expectancy in the Asian region. These findings could have positive implications for data-driven decision-making and welfare policy planning.
Downloads
References
T. Afriliansyah and Z. Zulfahmi, “Prediksi Angka Harapan Hidup Masyarakat Aceh dengan Model Terbaik Algoritma Cyclical Order,” Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), vol. 2, pp. 441–449, 2020.
Cost and affordability of healthy diets across and within countries. 2020. doi: 10.4060/cb2431en.
P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1255/1/012033.
A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1255/1/012016.
C. Wang, C. Deng, and S. Wang, “Imbalance-XGBoost: leveraging weighted and focal losses for binary labelimbalanced classification with XGBoost,” Pattern Recognit Lett, vol. 136, 2020, doi: 10.1016/j.patrec.2020.05.035.
S. P. Sinaga, A. Wanto, and S. Solikhun, “Implementasi Jaringan Syaraf Tiruan Resilient Backpropagation dalam Memprediksi Angka Harapan Hidup Masyarakat Sumatera Utara,” Jurnal Infomedia, vol. 4, no. 2, 2020, doi: 10.30811/jim.v4i2.1573.
P. R. , , D. A. Sihombing, S. Suryadiningrat, and Y. P. A. C. Yuda, . “Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya,” Jurnal Ekonomi dan Statistik Indonesia, pp. 307–316, 2022.
C. Nkikabahizi, W. Cheruiyot, and A. Kibe, “Chaining Zscore and feature scaling methods to improve neural networks for classification[Formula presented],” Appl Soft Comput, vol. 123, 2022, doi: 10.1016/j.asoc.2022.108908.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, 2021, doi: 10.3390/informatics8040079.
D. A. Anggoro and N. A. Afdallah, “Grid Search CV Implementation in Random Forest Algorithm to Improve Accuracy of Breast Cancer Data,” Int J Adv Sci Eng Inf Technol, vol. 12, no. 2, 2022, doi: 10.18517/ijaseit.12.2.15487.
D. S. K. Karunasingha, “Root mean square error or mean absolute error? Use their ratio as well,” Inf Sci (N Y), vol. 585, 2022, doi: 10.1016/j.ins.2021.11.036.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.