Sentiment Analysis on Ferizy Application Reviews Using Support Vector Machine Method
Analisis Sentimen Pada Ulasan Aplikasi Ferizy Menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.21070/ups.3441Keywords:
Ferizy, Google Play Store, Sentiment Analysis, Support Vector MachineAbstract
Ferizy is a sea transportation ticket booking service that can be accessed by users through official website and Ferizy application on Google Play Store. To improve the quality of application, Ferizy users can provide reviews of the function and performance of APP through the Google Play Store. Reviews provided by users can be identified as positive or negative sentiment through sentiment analysis with the help of machine learning. In this situation, researchers compared SVM, Naive Bayes, and LSTM methods by covering a dataset of 1,500 reviews. Based on testing, the RBF kernel in this study produces the highest accuracy at a ratio of training data and test data of 90: 10 with accuracy reaching 90.71%. Evaluation of SVM accuracy results using the Confusion Matrix method produces a percentage of 91%. Comparison with Naive Bayes and LSTM methods with the same dataset ratio only produces an accuracy of 83.88% and 85.33%.
Downloads
References
C. Malisi, “ANALISIS KINERJA SISTEM RESERVASI DAN PEMBAYARAN TIKET FERI (FERIZY) DENGAN METODE IMPORTANCE PERFORMANCE ANALYSIS (IPA) PADA PT. ASDP INDONESIA FERRY,” 2021.
S. Fransiska dan A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, hlm. 2407–7658, 2020, [Daring]. Tersedia pada: http://journal.unnes.ac.id/nju/index.php/sji
T. M. Permata Aulia, N. Arifin, dan R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science and Information Technology) Journal, vol. 4, no. 2, hlm. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, dan S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal of Computer Engineering, System and Science), vol. 5, no. 2, hlm. 293, 2020, doi: 10.24114/cess.v5i2.18186.
Z. Alhaq, A. Mustopa, S. Mulyatun, dan J. D. Santoso, “PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS Informatika Universitas Amikom Yogyakarta Abstraksi Keywords : Pendahuluan Tinjauan Pustaka,” Jurnal of Information System Management, vol. Vol. 3, no. 2, hlm. 44–49, 2021, [Daring]. Tersedia pada: https://jurnal.amikom.ac.id/index.php/joism/article/view/558
M. I. H. A. D. Akbari, A. Novianty, dan C. Setianingsih, “Analisis Sentimen Menggunakan Metode Learning Vector Quantization Sentiment Analysis Using Learning Vector Quantization Method,” 2017.
L. Ardiani, H. Sujaini, dan T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, hlm. 183, Apr 2020, doi: 10.26418/justin.v8i2.36776.
A. C. Pradikdo dan A. Ristyawan, “Model Klasifikasi Abstrak Skripsi Menggunakan Text Mining Untuk Pengkategorian Skripsi Sesuai Bidang Kajian,” Jurnal SIMETRIS, vol. 9, no. 2, hlm. 1091–1098, 2018.
B. B. Baskoro, I. Susanto, dan S. Khomsah, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” INISTA (Journal of Informatics Information System Software Engineering and Applications), vol. 3, no. 2, hlm. 21–29, 2021, doi: 10.20895/INISTA.V3I2.
S. Khairunnisa, A. Adiwijaya, dan S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, hlm. 406, Apr 2021, doi: 10.30865/mib.v5i2.2835.
D. Alita, Y. Fernando, dan H. Sulistiani, “IMPLEMENTASI ALGORITMA MULTICLASS SVM PADA OPINI PUBLIK BERBAHASA INDONESIA DI TWITTER,” Jurnal TEKNOKOMPAK, vol. 14, no. 2, hlm. 86, 2020.
U. Khaira, R. Johanda, P. E. P. Utomo, dan T. Suratno, “Sentiment Analysis Of Cyberbullying On Twitter Using SentiStrength,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 3, no. 1, hlm. 21, Mei 2020, doi: 10.24014/ijaidm.v3i1.9145.
M. Nurjannah dan I. Fitri Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK TEXT MINING,” Jurnal Informatika Mulawarman, vol. 8, no. 3, hlm. 110–113, 2013.
N. L. Ratniasih, M. Sudarma, dan N. Gunantara, “Penerapan Text Mining Dalam Spam Filtering Untuk Aplikasi Chat,” Majalah Ilmiah Teknologi Elektro, vol. 16, no. 3, hlm. 13, 2017, doi: 10.24843/mite.2017.v16i03p03.
V. I. Santoso, G. Virginia, dan Y. Lukito, “PENERAPAN SENTIMENT ANALYSIS PADA HASIL EVALUASI DOSEN DENGAN METODE SUPPORT VECTOR MACHINE,” 2017.
F. F. Irfani, M. Triyanto, A. D. Hartanto, dan Kusnawi, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Informatika), vol. 16, no. 3, hlm. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.
D. P. Daryfayi Edyt dan I. Asror, “Sentimen Analisis pada Ulasan Google Play Store Menggunakan Metode Naïve Bayes,” Sentimen Analisis pada Ulasan Google Play Store Menggunakan Metode Naïve Bayes, vol. 7, no. Ulasan Pada Google Play Store, hlm. 11, 2020.
F. D. Ananda dan Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, hlm. 407–416, Mei 2021, doi: 10.30812/matrik.v20i2.1130.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.