Preprint has been published in a journal as an article
Preprint / Version 1

Prediction of Hypertension Disease Using Decision Tree and Random Forest Methods


Prediksi Penyakit Hipertensi Menggunakan Metode Decision Tree dan Random Forest

##article.authors##

DOI:

https://doi.org/10.21070/ups.3200

Keywords:

Classification, Hypertension Disease, Decision Tree, Random Forest

Abstract

Hypertension is a significant public health issue, often lacking obvious symptoms in patients' functional health. Hypertension stands as a major risk factor for coronary heart disease, heart failure, and stroke. Factors contributing to hypertension include age, gender, family history, genetics, smoking habits, obesity, lack of physical activity, stress, and estrogen use. Presently, technology continues to advance, bringing convenience to the medical community through technological solutions. Among these is a program utilizing artificial intelligence for hypertension detection, implementing machine learning. This research aims to contribute to the development of applications that aid medical professionals, particularly doctors and hospitals, in diagnosing hypertension with optimal accuracy. The methods used in this study are decision tree and random forest. The stages range from reprocessing data to evaluation. The decision tree method achieves an accuracy of 100%, and the same result is obtained from the random forest method. 

Downloads

Download data is not yet available.

References

B. L. Yudha, L. Muflikhah, and R. C. Wihandika, “Klasifikasi Risiko Hipertensi Menggunakan Metode Neighbor Weighted K- Nearest Neighbor (NWKNN),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, pp. 897–904, 2018.

R. E. Putri, “Implementasi Expert System Diagnosa Penyakit Hipertensi Menggunakan Metode Dempster Shafer,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1557–1567, 2022, doi: 10.35957/jatisi.v9i2.2100.

A. C. Telaumbanua and Y. Rahayu, “Penyuluhan Dan Edukasi Tentang Penyakit Hipertensi,” J. Abdimas Saintika, vol. 3, no. 1, p. 119, 2021, doi: 10.30633/jas.v3i1.1069.

A. N. Syahrudin and T. Kurniawan, “Input dan Output pada Bahasa Pemrograman Python,” J. Dasar Pemrograman Python STMIK, no. January, pp. 1–7, 2018, [Online]. Available: https://www.researchgate.net/publication/338385483.

M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, “Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” J. Inform., vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.

E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 10.51211/biict.v7i2.1422.

B. Kriswantara and R. Sadikin, “Used Car Price Prediction with Random Forest Regressor Model,” J. Inf. Syst. Informatics Comput. Issue Period, vol. 6, no. 1, pp. 40–49, 2022, doi: 10.52362/jisicom.v6i1.752.

A. Muzakir and R. A. Wulandari, “Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,” Sci. J. Informatics, vol. 3, no. 1, pp. 19–26, 2016, doi: 10.15294/sji.v3i1.4610.

G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.

M. M. Santoni, N. Chamidah, and N. Matondang, “Prediksi Hipertensi menggunakan Decision Tree, Naïve Bayes dan Artificial Neural Network pada software KNIME,” Techno.Com, vol. 19, no. 4, pp. 353–363, 2020, doi: 10.33633/tc.v19i4.3872.

P. Purwono et al., “‎Model Prediksi Otomatis Jenis Penyakit Hipertensi Dengan Pemanfaatan Algoritma Machine Learning Artificial Neural Network,” Insect (Informatics Secur. J. Tek. Inform., vol. 7, no. 2, pp. 82–90, 2022, [Online]. Available: http://www.ejournal.um-sorong.ac.id/index.php/insect/article/view/1828.

A. Wantoro, A. Syarif, K. N. Berawi, K. Muludi, S. R. Sulistiyanti, and S. Sutyarso, “Implementasi Metode Pembobotan Berbasis Aturan Dan Metode Profile Matching Pada Sistem Pakar Medis Untuk Prediksi Risiko Hipertensi,” J. Teknoinfo, vol. 15, no. 2, p. 134, 2021, doi: 10.33365/jti.v15i2.1523.

S. Choerunnisa Nurzanah, S. Alam, and T. Iman Hermanto, “Analisis Association Rule Untuk Identifikasi Pola Gejala Penyakit Hipertensi Menggunakan Algoritma Apriori (Studi Kasus: Klinik Rafina Medical Center),” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 132–141, 2022, doi: 10.33387/jiko.v5i2.4792.

F. Supriyono, Erida, “SISTEM PAKAR PENEGAKAN DIAGNOSA PENYAKIT HIPERTENSI DENGAN INFERENSI FORWARD CHAINING MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM),” vol. 08, no. 02, pp. 207–221, 2022.

S. A. Nugraha, H. N. Palit, and H. Juwiantho, “Aplikasi Analisa Sentimen Bilingual dan Emoji pada Komentar Media Sosial Instagram Menggunakan Metode Support Vector Machine.”

Posted

2023-09-04