Preprint has been published in a journal as an article
Preprint / Version 1

Stroke Disease Prediction Using Random Forest Method


Prediksi Penyakit Stroke Menggunakan Metode Random Forest

##article.authors##

  • Priyo Wahyu Setiyo Aji Universitas Muhammadiyah Sidoarjo
  • Suprianto Suprianto Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.21070/ups.2643

Keywords:

stroke, classification, machine learning, random forest

Abstract

Stroke is a cerebrovascular disease or brain injury that blocks blood vessels thereby limiting blood supply to the brain. Currently technology is growing. The medical community is greatly helped by the development of technology. One of them is a program that can be used to detect stroke with artificial intelligence. In this study, the data used came from the Kaggle.com website and the researchers used a machine learning method, namely random forest. Random forest is a combination of mutually independent classification trees that come from the same distribution through a voting process. Several stages were carried out in this study including the preprocessing, processing and evaluation stages. The results of this study are an accuracy of 99%.

Downloads

Download data is not yet available.

References

M. A. As Sarofi, I. Irhamah, and A. Mukarromah, “Identifikasi Genre Musik dengan Menggunakan Metode Random Forest,” Jurnal Sains dan Seni ITS, vol. 9, no. 1, pp. 79–86, 2020, doi: 10.12962/j23373520.v9i1.51311.

E. Agustin, A. Eviyanti, and N. Lutvi Azizah, “Deteksi Penyakit Epilepsi Melalui Sinyal EEG Menggunakan Metode DWT dan Extreme Gradient Boosting,” vol. 7, no. 1, pp. 117–127, 2023, doi: 10.30865/mib.v7i1.5412.

N. Permatasari, “Perbandingan Stroke Non Hemoragik dengan Gangguan Motorik Pasien Memiliki Faktor Resiko Diabetes Melitus dan Hipertensi,” Jurnal Ilmiah Kesehatan Sandi Husada, vol. 11, no. 1, 2020, doi: 10.35816/jiskh.v11i1.273.

J. Antares, “Artificial Neural Network Dalam Mengidentifikasi Penyakit Stroke Menggunakan Metode Backpropagation ( Studi Kasus di Klinik Apotik Madya Padang ),” Djtechno: Jurnal Teknologi Informasi, vol. 1, no. 1, 2021, doi: 10.46576/djtechno.v1i1.965.

M. A. As Sarofi, I. Irhamah, and A. Mukarromah, “Identifikasi Genre Musik dengan Menggunakan Metode Random Forest,” Jurnal Sains dan Seni ITS, vol. 9, no. 1, 2020, doi: 10.12962/j23373520.v9i1.51311.

F. Akbar, H. Wira Saputra, A. Karel Maulaya, M. Fikri Hidayat, and Rahmaddeni, “Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke,” vol. 2, no. October, pp. 61–67, 2022.

U. Amelia et al., “Implementasi Algoritma Support Vector Machine ( Svm ) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” … Student Journal for …, vol. III, pp. 254–259, 2022.

M. N. Maskuri, K. Sukerti, and R. M. Herdian Bhakti, “Penerapan Algoritma K-Nearest Neighbor ( KNN ) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 4, no. 1, pp. 130–140, 2022.

A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 9, no. 3, pp. 407–411, 2020, doi: 10.32736/sisfokom.v9i3.1023.

D. E. Cahyani, “Penerapan Machine Learning Untuk Prediksi Penyakit Stroke,” Jurnal Kajian Matematika dan Aplikasinya, vol. 3, no. January, pp. 8–14, 2022, doi: 10.17977/um055v3i1p15-22.

D. Prajarini, S. Tinggi, S. Rupa, D. Desain, and V. Indonesia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Kulit,” Informatics Journal, vol. 1, no. 3, p. 137, 2016.

R. S. Rohman, R. A. Saputra, and D. A. Firmansaha, “Komparasi Algoritma C4.5 Berbasis PSO Dan GA Untuk Diagnosa Penyakit Stroke,” CESS (Journal of Computer Engineering, System and Science), vol. 5, no. 1, p. 155, 2020, doi: 10.24114/cess.v5i1.15225.

M. A. As Sarofi, I. Irhamah, and A. Mukarromah, “Identifikasi Genre Musik dengan Menggunakan Metode Random Forest,” Jurnal Sains dan Seni ITS, vol. 9, no. 1, pp. 79–86, 2020, doi: 10.12962/j23373520.v9i1.51311.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf Sci (N Y), vol. 507, 2020, doi: 10.1016/j.ins.2019.06.064.

Posted

2023-08-24