Convolutional Neural Network Implementation Using the TensorFlow Library for Freshness Detection in Apples
Implementasi Convolutional Neural Network Menggunakan Library TensorFlow untuk Deteksi Kesegaran pada Apel
DOI:
https://doi.org/10.21070/ups.2354Keywords:
Android, Convolutional Neural Networks, LeNet-5, Artificial Intelligence, Fruit Freshness DetectionAbstract
Artificial intelligence products such as computer vision have begun to replace the role of humans in several fields of work. Based on BPS data, the percentage of Indonesia's fruit exports grew 10.36% in February 2022 with a value of US$ 340 million. This causes the need for time efficiency when carrying out the export process for determining the quality of the fruit. The amount of time, human resources, and the lack of understanding in determining the quality of fruit are things that need to be considered. Based on these problems and questions, this research was conducted to create a project that proves computer vision can also determine fruit’s quality by applying the Convolutional Neural Network algorithm with LeNet-5 architecture. This project is an android mobile-based application that can detect the condition of the fruit whether it is suitable (fresh) or not suitable (rotten) for consumption.
Downloads
References
Cintia Alifta Riyanisa, “RANTAI NILAI GLOBAL (GLOBAL VALUE CHAINS) PADA MASA PANDEMI TERKAIT POSISI BUAH JAMBU DAN APEL,” Indonesian Journal of International Relations, vol. 6, no. 2, pp. 307–325, Aug. 2022, doi: 10.32787/ijir.v6i2.349.
Z. Dou, J. D. Toth, and M. L. Westendorf, “Food waste for livestock feeding: Feasibility, safety, and sustainability implications,” Global Food Security, vol. 17. Elsevier B.V., pp. 154–161, Jun. 01, 2018. doi: 10.1016/j.gfs.2017.12.003.
J. Homepage, A. Roihan, P. Abas Sunarya, and A. S. Rafika, “IJCIT (Indonesian Journal on Computer and Information Technology) Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” 2019.
S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network”.
Y. Li, X. Feng, Y. Liu, and X. Han, “Apple quality identification and classification by image processing based on convolutional neural networks,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-96103-2.
A. B. Kuriakose, F. Siju, M. K. Aji, T. Rahim, and C. Rani, “Automatic Fruit Classification and Freshness Detection.” [Online]. Available: www.ijert.org
SRIRAM REDDY KALLURI, “Fruits fresh and rotten for classification,” Kaggle, 2018.
M. Faturrachman and I. Yustiana, “DISEASE DETECTION SYSTEM IN CASSAVA LEAVES USING ANDROID-BASED DEEP LEARNING AND TENSORFLOW.”
I. W. Prastika, E. Zuliarso, J. T. Lomba, J. No, and S. 50241, “DETEKSI PENYAKIT KULIT WAJAH MENGGUNAKAN TENSORFLOW DENGAN METODE CONVOLUTIONAL NEURAL NETWORK,” Jurnal Manajemen informatika & Sistem Informasi), vol. 4, no. 2, 2021, [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/misi
S. Yuliany and A. Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” 2022.
I. Wulandari, H. Yasin, and T. Widiharih, “KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN)”, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
S. Juliansyah and A. D. Laksito, “Klasifikasi Citra Buah Pir Menggunakan Convolutional Neural Networks,” Jurnal Telekomunikasi dan Komputer, vol. 11, no. 1, pp. 65–72, 2021, doi: 10.22441/incomtech.v10i2.10185.
B. Nugroho and E. Yulia, “KINERJA METODE CNN UNTUK KLASIFIKASI PNEUMONIA DENGAN VARIASI UKURAN CITRA INPUT,” vol. 8, no. 3, pp. 533–538, 2021, doi: 10.25126/jtiik.202184515.
C. A. Lorentius, R. Adipranata, and A. Tjondrowiguno, “Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network.”
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.