DOI of the published article https://doi.org/10.30645/kesatria.v4i3.210
The Use of Data Mining to Predict Student Study Period at Muhammadiyah University Sidoarjo by Using Naive Bayes Algorithm
Penggunaan Datamining untuk Memprediksi Masa Studi Mahasiswa di Universitas Muhammadiyah Sidoarjo dengan Algoritma Naive Bayes
DOI:
https://doi.org/10.21070/ups.2243Keywords:
Datamining, Naïve Bayes, Confusion Matrix, Python, Study Period PredictionAbstract
In this study, 9 academic and non-academic variables were used, consisting of semester grade point index, Semesters 1, 2, 3 and 4, GPA, school origin (public/private), finance (constrained by financial problems or not), scholarship (whether get a scholarship or not), Student Affairs (active or not in the student program). The use of academic and non-academic data variables in this study aims to broaden the predictions of student graduation which are not only assessed from an academic point of view, but also look at non-academic factors. The data used is student’s data for the 2017-2018 Informatics study program at the Muhammadiyah University of Sidoarjo. This data is obtained from the Directorate of Information Systems & Technology (DSTI) Muhammadiyah University of Sidoarjo as many as 200 data.
Downloads
References
I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., vol. 6, no. 1, p. 1, 2020, doi: 10.24076/citec.2019v6i1.178.
A. Ashraf, S. Anwer, and M. Gufran, “A Comparative Study of Predicting Student ’ s Performance by use of Data Mining Techniques,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 44, no. 1, pp. 122–136, 2018.
a a Saputro and R. Helilintar, “Perancangan Prediksi Prestasi Nilai Akademik Mahasiswa Menggunakan Metode K-Means Clustering,” Prosiding Semnas Inotek …. 2020, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/172.
E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020.
L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Fakt. Exacta, vol. 13, no. 1, p. 35, 2020, doi: 10.30998/faktorexacta.v13i1.5548.
M. W. Amelia, A. S. M. Lumenta, and A. Jacobus, “Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes,” E-Journal Tek. Inform., vol. 11, no. 1, 2017.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
M. Windarti and A. Suranadi, “Perbandingan Kinerja 6 Algoritme Klasifikasi Data Mining Untuk Prediksi Masa Studi Mahasiswa,” J. Telemat., vol. 1, no. 1, pp. 14–30, 2019.
H. A. Mengash, “Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems,” IEEE Access, vol. 8, pp. 55462–55470, 2020, doi: 10.1109/ACCESS.2020.2981905.
M. R. Qisthiano, T. B. Kurniawan, E. S. Negara, and M. Akbar, “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 987, 2021, doi: 10.30865/mib.v5i3.3030.
A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023.
M. K. Sophan, A. Kurniawati, T. Informatika, and U. T. Madura, “Perancangan Aplikasi Learning By Doing Interaktif Untuk Design of Interactive Applications " Learning By Doing " To Support,” vol. 5, no. 2, pp. 163–170, 2018, doi: 10.25126/jtiik.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.