Problem Posing through Analogy Process on Word Problems
Pengajuan Masalah melalui Proses Analogi pada Word Problems
DOI:
https://doi.org/10.21070/ups.1993Keywords:
Problem Posing , AnalogiesAbstract
This study aims to analyze and describe the process of analogy through the results of problem submission on word problems. The research method used a qualitative case study approach. Data collection techniques are written tests, interviews, observations. Data analysis techniques use data reduction, data presentation, and conclusion drawing. The research subjects used fifth grade students of SD Muhammadiyah Sidoarjo, with the selection of subjects using purposive sampling technique. From the test results given this study explains that there are differences in the analogy process represented by students, students who successfully solve the source problem can help propose problems because they have information to formulate ideas with the stages of the analogy process, and students who have difficulty solving the initial problem when proposing a new problem have low ability due to the absence of initial knowledge formed because the analogy process is not properly represented.
Downloads
References
L. Gentner, D., & Smith, “Analogical Reasoning,” in Encyclopedia of Human Behavior, 2nd ed., Elsevier, 2012, pp. 130–136. doi: 10.1016/B978-0-12-375000-6.00022-7.
L. D. English, “Reasoning by Analogy in Constructing Mathematical Ideas,” Cent. Math. Sci. Educ. Queensland, 1993.
K. J. Holyoak, “Analogy and Relational Reasoning,” in The Oxford Handbook of Thinking and Reasoning, Oxford University Press, 2012, pp. 234–259. doi: 10.1093/oxfordhb/9780199734689.013.0013.
K. J. Richland, Lindsey E., Stigler, James W., & Holyoak, “Teaching the Conceptual Structure of Mathematics,” Educ. Psychol., vol. 47, no. 3, pp. 189–203, Jul. 2012, doi: 10.1080/00461520.2012.667065.
T. Kojima, Kazuaki., Miwa, Kazuhisa., & Matsui, “Supporting Mathematical Problem Posing with a System for Learning Generation Processes through Examples,” Int. J. Artif. Intell. Educ., vol. 22, no. 4, pp. 161–190, 2013, doi: 10.3233/JAI-130035.
C. Bonotto, “Engaging Students in Mathematical Modelling and Problem Posing Activities,” J. Math. Model. Appl., vol. 1, no. 3, pp. 18–32, 2010.
L. D. English, “Children’s Problem Posing within Formal and Informal Contexts,” J. Res. Math. Educ., vol. 29, no. 1, pp. 83–106, Jan. 1998, doi: 10.2307/749719.
E. A. Silver, “On Mathematical Problem Posing,” Learn. Math., vol. 14, no. 1, pp. 19–28, 1994.
J. Singer, Florence Mihaela., Nerida F, Ellerton., & Cai, Mathematical Problem Posing. New York, NY: Springer New York, 2015. doi: 10.1007/978-1-4614-6258-3.
J. F. Matos, P. Valero, K. Y. Editors, N. Pedro, and P. P. Collaborators, Proceedings of the Fifth International Mathematics Education and Society Conference, vol. 3, no. February. 2008.
C. E. Silver, Edward A., Goldin, G. A., & McClintock, “Task Variables in Mathematical Problem Solving,” J. Res. Math. Educ., vol. 12, no. 3, p. 234, 1981, doi: 10.2307/748933.
W. Schmidt, Siegbert., & Werner, “Semantic Structures of One-Step Word Problems Involving Multiplication or Division.,” Educ. Stud. Math., vol. 28, no. 1, pp. 55–72, 1995, [Online]. Available: http://www.jstor.org/stable/3482698 .
R. Kajamies, Anu,. Vauras, Marja,. & Kinnunen, “Instructing low-achievers in mathematical word problem solving,” Scand. J. Educ. Res., vol. 54, no. 4, pp. 335–355, 2010, doi: 10.1080/00313831.2010.493341.
K. Kojima, Kazuaki., & Miwa, “A System that Facilitates Diverse Thinking in Problem Posing,” Int. J. Artif. Intell. Educ., vol. 18, no. 3, pp. 209–236, 2008.
F. M. Voica, C., & Singer, Analogical Transfer And Cognitive Framing In Prospective Teachers’ Problem Posing Activities, no. Mcg 11. WTM-Verlag, 2019. doi: 10.37626/GA9783959871327.0.
J. S. Ramírez, Miguel Cruz., Pupo, Mauro García., Velázquez, Osvaldo Rojas., & Almira, “Analogies in Mathematical Problem Posing,” J. Sci. Educ., vol. 17, no. 2, pp. 84–90, 2016.
H. Poincaré, Science and Method. 1914.
S. S. Leung, “On the Role of Creative Thinking in Problem Posing,” Zentralblatt für Didakt. der Math., vol. 29, no. 3, pp. 81–85, Jun. 1997, doi: 10.1007/s11858-997-0004-9.
G. Polya, “How to Solve it: a New Aspect of Mathematical Method Second Edition,” Math. Gazette, vol. 30, p. 181, 1978, [Online]. Available: http://www.jstor.org/stable/3609122?origin=crossref
M. White, C Stephen,. Alexander, Patricia A,. & Daugherty, “The Relationship between Young Children ’ s Analogical Reasoning and Mathematical Learning,” Math. Cogn., vol. 4, no. August 1997, pp. 103–123, 1998, doi: 10.1080/135467998387352.
F. Nugrahani, “Metode Penelitian Kualitatif,” 2014, pp. 42–320.
D. P. Turner, “Sampling Methods in Research Design,” Headache J. Head Face Pain, vol. 60, no. 1, pp. 8–12, Jan. 2020, doi: 10.1111/head.13707.
J. W. Creswell, Research Design Qualitative, Quantitative, and Mixed Method Approaches. 2013.
J. Miles, Matthew B., Huberman, A Michael., & Saldana, Qualitative Data Analysis A Methods Sourcebook. 2014.
K. D. Gentner, Dedre., & Forbus, “Computational Models of Analogy,” Wires Cogn. Sci., vol. 2, no. 3, pp. 266–276, May 2010, doi: 10.1002/wcs.105.
R. J. Sternberg, The psychology of problem solving. 2013. doi: 10.1017/CBO9780511615771.
S. Ramadhani, “Kemampuan Penalaran Analogis Santri dalam Geometri: Kualitatis dI Sebuah Pondok Pesantren,” Mosharafa, vol. 6, pp. 385–386, 2017.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.