Analogy Problem Posing for Elementary School Students on Word Problems
Analogi Pengajuan Masalah untuk Siswa Sekolah Dasar pada Word Problems
DOI:
https://doi.org/10.21070/ups.1926Keywords:
Characteristics, Analogies, Mathematics, Problem posing, Elementary school studentsAbstract
This study aims to determine the analogy characteristics of elementary school students in proposing word problems. Analogical reasoning is a complex process that involves retrieving structured knowledge from long-term memory, representing and manipulating role-filling ties in working memory, identifying elements that play appropriate roles, generating new conclusions, and learning abstract schemes. The characteristics of analogy are categorized into four:(1) reformulation, rearrangement of information by changing the order of numbers but still paying attention to the order of mathematical operations.(2) reconstruction, Students rearrange information in the initial problem so that the problem appears different but is identical to the initial problem. (3) reproduction, the resulting product creates a new problem that is different by changing the structure of the initial problem. (4) imitation, changing the structure of the given problem by expanding the goal statement so that the initial problem becomes a step of the solution process of the new problem.
Downloads
References
K. Kojima, K. Miwa, and T. Matsui, “Supporting Mathematical Problem Posing With a System for Learning Generation Processes Through Examples,” Int. J. Artif. Intell. Educ., vol. 22, no. 4, pp. 161–190, 2013, doi: 10.3233/JAI-130035.
E. Stoyanova, “Problem Posing Strategies Used by Years 8 and 9 Students,” Aust. Math. Teach., vol. 61, no. 3, pp. 6–11, 2005, [Online]. Available: http://www.freepatentsonline.com/article/Australian-Mathematics-Teacher/164525411.html
L. Baumanns and B. Rott, “Developing a Framework for Characterising Problem Posing Activities: A Review,” Res. Math. Educ., vol. 24, no. 1, pp. 28–50, 2022, doi: 10.1080/14794802.2021.1897036.
F. M. Singer, E. Nerida F, and J. Cai, Mathematical Problem Posing: From Research to Effective Practice. 2015. doi: 10.1007/978-1-4614-6258-3.
K. Kristayulita, T. Nusantara, A. R. As’Ari, and C. Sa’Dijah, “Identification of Students Errors in Solving Indirect Analogical Problems Based on Analogical Reasoning Components,” J. Phys. Conf. Ser., vol. 1028, no. 1, pp. 1–6, 2018, doi: 10.1088/1742-6596/1028/1/012154.
K. J. Holyoak, “Analogy and Relational Reasoning,” Oxford Handb. Think. Reason., pp. 234–259, 2012, doi: 10.1093/oxfordhb/9780199734689.013.0013.
L. Baumanns and B. Rott, “The Process of Problem Posing: Development of a Descriptive Phase Model of Problem Posing,” Educ. Stud. Math., vol. 110, no. 2, pp. 251–269, 2022, doi: 10.1007/s10649-021-10136-y.
D. Gentner, K. J. Holyoak, and B. N. Kokinov, The Analogical Mind Perspectives from Cognitive Science, Cloth 2001. 2016.
I. Papadopoulos, N. Patsiala, L. Baumanns, and B. Rott, “Multiple Approaches to Problem Posing: Theoretical Considerations Regarding its Definition, Conceptualisation, and Implementation,” Cent. Educ. Policy Stud. J., vol. 12, no. 1, pp. 13–34, 2022, doi: 10.26529/cepsj.878.
S. Mandal and S. K. Naskar, Solving Arithmetic Mathematical Word Problems: A Review and Recent Advancements, vol. 699. Springer Singapore, 2019. doi: 10.1007/978-981-10-7590-2_7.
K. Scheiter, P. Gerjets, and J. Schuh, “The Acquisition of Problem-Solving Skills in Mathematics: How Animations Can Aid Understanding of Structural Problem Features and Solution Procedures,” Instr. Sci., vol. 38, no. 5, pp. 487–502, 2010, doi: 10.1007/s11251-009-9114-9.
L. Verschaffel, S. Schukajlow, J. Star, and W. Van Dooren, “Word Problems in Mathematics Education: A Survey,” ZDM - Math. Educ., vol. 52, no. 1, pp. 1–16, 2020, doi: 10.1007/s11858-020-01130-4.
M. E. Gray and K. J. Holyoak, “Teaching by Analogy: From Theory to Practice,” Mind, Brain, Educ., vol. 15, no. 3, pp. 250–263, 2021, doi: 10.1111/mbe.12288.
K. Kristayulita, A. R. Asari, and C. Sa’dijah, “Masalah Analogi : Kajian Teoritik Skema Penalaran Analogi,” J. Ilm. MIPA, vol. 1, no. 1, pp. 435–441, 2017, [Online]. Available: http://conferences.uin-malang.ac.id/index.php/SIMANIS
H. Palmér and J. van Bommel, “Young Students Posing Problem-Solving Tasks: What Does Posing a Similar Task Imply to Students?,” ZDM - Math. Educ., vol. 52, no. 4, pp. 743–752, 2020, doi: 10.1007/s11858-020-01129-x.
A. B. I. Bernardo, “Overcoming Obstacles to Understanding and Solving Word Problems in Mathematics,” Int. J. Phytoremediation, vol. 19, no. 2, pp. 149–163, 1999, doi: 10.1080/0144341990190203.
M. Orgill and G. M. Bodner, “An Analysis of the Effectiveness of Analogy Use in College Level Biochemistry Textbooks,” J. Res. Sci. Teach., vol. 43, no. 10, pp. 1040–1060, 2006, doi: 10.1002/tea.20129.
E. A. Silver and J. Cai, “An Analysis of Arithmetic Problem Posing by Middle School Students,” J. Res. Math. Educ., vol. 27, no. 5, pp. 521–539, 1996, doi: 10.2307/749846.
A. Mallart, V. Font, and J. Diez, “Case Study on Mathematics Pre-service Teachers’ Difficulties in Problem Posing,” Eurasia J. Math. Sci. Technol. Educ., vol. 14, no. 4, pp. 1465–1481, 2018, doi: 10.29333/ejmste/83682.
M. R. Fadli, “Memahami Desain Metode Penelitian Kualitatif,” Humanika, vol. 21, no. 1, pp. 33–54, 2021, doi: 10.21831/hum.v21i1.38075.
M. B. Milles and A. M. Huberman, Qualitative Data Analysis. 1994.
Sudarsono, “Penerapan Metode Penemuan Terbimbing Dalam Pembelajaran Persegi Panjang,” NASPA J., vol. 42, no. 4, p. 1, 2014.
A. R. Sari and U. Aripin, “Analisis Kesalahan Siswa dalam Menyelesaikan Soal Cerita Bangun Datar Segiempat Ditinjau dari Kemampuan Pemecahan Masalah Matematika untuk Siswa Kelas VII,” JPMI (Jurnal Pembelajaran Mat. Inov., vol. 1, no. 6, pp. 1135–1142, 2018, doi: http://dx.doi.org/10.22460/jpmi.v1i6.p1135-1142.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
