Preprint has been submitted for publication in journal
Preprint / Version 1

Forecasting Number of Mountain Bike Demand Requests in Indonesia Using Support Vector Machine


Peramalan Jumlah Permintaan Sepeda Gunung di Indonesia Menggunakan Support Vector Machine

##article.authors##

DOI:

https://doi.org/10.21070/ups.1418

Keywords:

Forecasting, Time Series, K-means, Support Vector Machine

Abstract

Mountain bikes are a model of bicycle development from the first generation of bicycles and currently many bicycle industries have emerged so that their development has accelerated. One of the most influential factors in the development of mountain bikes is that they are supported by bicycles which are no longer a means of transportation but have become a way of life in today's era.

Companies in Indonesia themselves have not been able to meet this because demand for mountain bikes in Indonesia is currently very high and can change with certain conditions so as to meet the needs of bicycles in Indonesia, this final project is forecasting the number of mountain bike requests based on demand in 2018 until the year 2019.

The SVM method was chosen because it has the advantage of solving both linear and non-linear problems so that forecasting can be done with existing patterns.

Downloads

Download data is not yet available.

References

Wiyancoko, Dudy. 2020. “Desain Sepeda Indonesia”. Jakarta. Gramedia.

Kumar, S. Anil, N. Suresh. 2008. “Operatio Management”. New Age International (P) Ltd.

Yuniastari, N. L. A. K., & Wirawan, I. W. W. (2014). Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Single Exponential Smoothing. Sistem dan Informasi STIKOM Bali, 9(1), 97-106.

Mutmainnah, Ayu. 2018. “Application Support Vector Machine (SVM) Method On Stock Price Forecasting of PT. Telekomunikasi Indonesia TBK”. Seminar Nasional Edusaintek ISBN: 978-602-5614-35-4.

Radhika, Y., & Shashi, M. (2009). Atmospheric Temperature Prediction using Support Vector Machines. International Journal of Computer Theory and Engineering. 1(1). 55-58. https://doi.org/10.7763/ijcte.2009.v1.9

Wulandari, Retno Tri. 2017. “Data Mining Teori dan Aplikasi Rapidminer”. Yogyakarta: Gava Media.

Adiningtyas, Desy Trihardiyanti, Diah Safitri, Moch. Abdul Mukid. 2015. “Peramalan Jumlah Tamu Hotel di Kabupaten Demak Menggunakan Metode Support Vector Machine”. JURNAL GAUSSIAN. Vol.04, No.04, Tahun 2015. Halaman: 785-794.

Muis, Imelda A., Muhammad Affandes, M. T. 2015. “Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radius Basis Function (RBF) Pada Klasifikasi Tweet”. Jurnal Sains, Teknologi dan Industri, Vol.12, No.2, Juni 2015. Pp. 189-197.

Yasin, H., Prahutama, A., & Utami, T. W. (2014). PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH. Media Statistika, 7(1), 29-35.

Ariadi, Dio dan Kartika Fithriasari. 2015. “Klasifikasi Berita Indonesia Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemme”. Jurnal Sains dan Seni ITS. Vol.04, No.02, (2015) 2337-3520 (2301-928X Print).

Posted

2023-06-20