Preprint has been published in a journal as an article
Preprint / Version 1

Web-Based Heart Disease Prediction System Using SVM Method and Streamlit Framework

Sistem Prediksi Penyakit Jantung Berbasis Web Menggunakan Metode SVM dan Framework Streamlit

##article.authors##

DOI:

https://doi.org/10.21070/ups.1378

Keywords:

Classification, Python, Machine Learning, Support Vector Machine

Abstract

Heart disease is a disease whose cases often occur in society regardless of age, gender and lifestyle. Heart attacks that are handled too late can cause dangerous complications with the most fatal risk, namely death. One of the machine learning algorithms that can be used is the Support Vector Machine. SVM can be used for regression and classification cases. The advantage of this algorithm is its fast computation. Classification of heart disease with the SVM algorithm results in an accuracy of 85%. The machine learning model that produces the accuracy value is then carried out by deploying the model using the Streamlit framework. This framework was created to make it easier for developers to build web-based programs in the fields of interactive data science and machine learning. The results of this study are web-based programs that can diagnose heart disease with an accuracy value of 85%.

Downloads

Download data is not yet available.

References

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, 2020, doi: 10.30865/mib.v4i2.2080.

S. Agustin, “Ciri-Ciri Sakit Jantung yang Harus Diwaspadai,” https://www.alodokter.com/kenali-ciri-ciri-sakit-jantung, May 08, 2022.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.

Samsudiney, “Penjelasan Sederhana tentang Apa Itu SVM?,” https://medium.com/@samsudiney/penjelasan-sederhana-tentang-apa-itu-svm-149fec72bd02, Jul. 25, 2019.

A. F. HIDAYATULLAH, “MEMBUAT APLIKASI WEB SAINS DATA DENGAN MUDAH MENGGUNAKAN STREAMLIT,” https://informatics.uii.ac.id/2021/03/15/streamlit-membuat-aplikasi-web-sains-data/, Mar. 15, 2021.

M. A. Bianto, K. Kusrini, and S. Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,” Creative Information Technology Journal, vol. 6, no. 1, 2020, doi: 10.24076/citec.2019v6i1.231.

D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5.0,” Jurnal Media Informatika Budidarma, vol. 4, no. 4, 2020.

A. Nurmasani and Y. Pristyanto, “ALGORITME STACKING UNTUK KLASIFIKASI PENYAKIT JANTUNG PADA DATASET IMBALANCED CLASS,” 2021. [Online]. Available: www.ejournal.unib.ac.id/index.php/pseudocode

A. Novita Sari and S. Alfionita, “Klasifikasi Penyakit Jantung Menggunakan Metode Naïve Bayes,” vol. 1, no. 1, pp. 22–26, 2022, doi: 10.12487/AMRI.v1i1.xxxxx.

P. R. Fitrayana and D. R. S. Saputro, “Algoritme Clustering Large Application (CLARA) untuk Menangani Data Outlier,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 5, pp. 721–725, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

P. R. , , D. A. Sihombing, S. Suryadiningrat, and Y. P. A. C. Yuda, . “Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya,” Jurnal Ekonomi dan Statistik Indonesia, pp. 307–316, 2022.

R. Fikri, “Handling Imbalanced Dataset,” https://medium.com/@rusnandifikri96/handling-imbalanced-dataset-260378b2a21b, Jul. 23, 2020.

Posted

2023-06-07