Forecasting the Number of Blood Demand Using The Support Vector Machine (SVM) Method
Peramalan Jumlah Permintaan Darah Menggunakan Metode Support Vector Machine (SVM)
DOI:
https://doi.org/10.21070/ups.1138Keywords:
forecasting, k-means, kernel, support vector machine, transfusionAbstract
Blood transfusion is a process of sending or transferring blood to another place and the task is delegated to the PMI Blood Donation Unit. However, the supply and demand from health agencies have a significant difference. The difference for each blood group is very large, in group O deficiency by 28%, in group A deficiency by 38%, in group B excess by 28%, and in group AB deficiency by 84%. To overcome this problem, it is necessary to estimate the demand for blood that will occur in the future period. One of the tools is forecasting using the Support Vector Machine (SVM) method. The result of this study obtained good MAPE values, namely in blood group O is 14%, in blood group A is 15%, in blood group B is 13%, and in blood type AB is 24%.
Downloads
References
M. Burrakhman, I. F. Astuti, and D. M. Khairina, “Rancang Bangun Sistem Informasi Donor Darah Berbasis Web (Studi Kasus : Unit Kegiatan Mahasiswa Korps Sukarela Universitas Mulawarman),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 11, no. 1, p. 55, 2016, doi: 10.30872/jim.v11i1.205.
S. E. Sari, “Gambaran Pengetahuan, Sikap, Dan Tindakan Donor Darah Pada Mahasiswa Fakultas Kedokteran Universitas Tanjungpura Pontianak,” vol. 1, pp. 81–109, 2013.
A. Oktari and N. D. Silvia, “Pemeriksaan Golongan Darah Sistem ABO Metode Slide dengan Reagen Serum Golongan Darah A , B , O,” J. Teknol. Lab., vol. 5, no. 2, pp. 49–54, 2016, [Online]. Available: https://teknolabjournal.com/index.php/Jtl/article/view/78.
N. L. A. K. Yuniastari and I. W. W. Wirawan, “Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Single Exponential Smoothing,” Sist. dan Inform. STIKOM Bali, vol. 9, no. 1, pp. 97–106, 2014.
R. Rahmadayanti, B. Susilo, and D. Puspitaningrum, “Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average (Arima) dan Exponential Smoothing pada Peramalan Penjualan Semen di PT Sinar Abadi,” J. Rekursif, vol. 3, no. 1, pp. 23–36, 2015.
Y. Radhika and M. Shashi, “Atmospheric Temperature Prediction using Support Vector Machines,” Int. J. Comput. Theory Eng., vol. 1, no. 1, pp. 55–58, 2009, doi: 10.7763/ijcte.2009.v1.9.
Wulandari, Retno Tri. 2017. “Data Mining Teori dan Aplikasi Rapidminer”. Yogyakarta: Gava Media.
H. Yasin, A. Prahutama, and T. W. Utami, “PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH,” Media Stat., vol. 7, no. 1, pp. 29– 35, 2014.
H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,” J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 1, no. 1, pp. 65–76, 2013.
L. Herawati, Uji Normalitas Data Kesehatan Menggunakan SPSS. 2016.
K. J. Kim, “Financial time series forecasting using support vector machines,” Neurocomputing, vol. 55, no. 1–2, pp. 307–319, 2003, doi: 10.1016/S0925-2312(03)00372-2.
A. S. Nugroho, A. B. Witarto, and D. Handoko, “Application of Support Vector Machine in Bioinformatics,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, pp. 842–847, 2003, doi: 10.1109/CCDC.2011.5968300.
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting. Canada: A John Wiley & Sons, Inc., Publication, 2008.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.