Preprint has been submitted for publication in journal
Preprint / Version 1

The Effect of Underwater Friction Stir Welding (UFSW) Process Parameters on AA5083 Aluminium on Joint Tensile Strength and Microstructure

Pengaruh Parameter Proses Underwater Friction Stir Welding (UFSW) pada Aluminium AA5083 terhadap Kekuatan Tarik Sambungan dan Mikrostruktur

##article.authors##

DOI:

https://doi.org/10.21070/ups.10045

Keywords:

fracture mechanism, Taguchi, metallography, water cooling

Abstract

Advances in manufacturing technology demand joining methods capable of producing high-quality joints with effective heat input control, particularly in aluminium alloys that are sensitive to thermal cycles. This study aims to evaluate the effect of process parameter variations on the quality of solid-state welded joints in water-cooled media. The research method was conducted experimentally using an orthogonal L9(34) experimental design, where the parameters varied included tool rotation speed, welding speed, tool angle, and cooling medium temperature. Mechanical testing was carried out through tensile testing, while material structure characterisation was performed using metallographic observation and fractographic analysis to identify the failure mechanism of the joints. The results showed that the optimal combination of process parameters produced homogeneous plastic material flow, finer grain structure, and improved mechanical performance of the joints. Cooling by water proved to be effective in suppressing grain growth and reducing defects caused by excessive heat.

Downloads

Download data is not yet available.

References

M. Sarifudin and P. H. Tjahjanti, “Karakteristik Pengelasan Shield Metal Arc Welding (SMAW) dan Gas Tungsten Arc Welding (GTAW) pada Plat Stainless Steel 201 di Tabung Air Minum,” Innov. Technol. Methodical Res. J., vol. 3, no. 1, p. 10, 2024.

S. T. Mulyadi and I. Iswanto, “Teknologi Pengelasan,” 2020, Umsida Press.

G. Nursafitri, A. Dwi, and N. Indriawan, “Mini Review : Analysis of The Influence of Work Environment on SMAW ( Shielded Metal Arc Welding ) Results,” vol. 23, no. 1, 2025.

H. S. Abadi et al., “Pengaruh Variasi Sudut Kampuh dan Kuat Arus Pengelasan Hasil Las SMAW Baja SS400 untuk Bahan Bejana Tekan terhadap Kekuatan Tarik dan Kekerasan Politeknik Negeri Malang , Indonesia Arus SMAW terhadap Kekuatan Tarik dan Impak Baja Konstruksi IWF JIS G3101 SS400 ”,” vol. 2, no. 5, 2024.

A. S. Budi and M. Mulyadi, “Simulation of Friction Stir Welding Process Temperature Distribution on AA6061-T6 Material Static Position: Simulasi Distribusi Suhu Proses Friction Stir Welding pada Material AA6061-T6 Posisi Statis,” Indones. J. Innov. Stud., vol. 13, pp. 10–21070, 2021.

H. Zhang and H. Liu, “Characteristics and Formation Mechanisms of Welding Defects in Underwater Friction Stir Welded Aluminum Alloy,” Metallogr. Microstruct. Anal., vol. 1, no. 6, pp. 269–281, 2012, doi: 10.1007/s13632-012-0038-4.

R. Silalahi, D. Prayitno, and S. Annas, “Studi Friction Stir Welding (Fsw) Pada Lembaran Al 5083 Dan Al 6061,” J. Ilm. Tek. Mesin, vol. 9, no. 2, p. 2023, 2023, [Online]. Available: http://ejournal2.uika-bogor.ac.id/index.php/ame/index

C. H. Chien, W. B. Lin, and T. Chen, “Optimal FSW process parameters for aluminum alloys AA5083,” in Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, Taylor and Francis Ltd., 2011, pp. 99–105. doi: 10.1080/02533839.2011.553024.

B. T. Pengelasan, U. Friction, and S. Welding, Teknologi Pengelasan Underwater Friction Stir Welding : Teori , Praktik , dan Aplikasi pada Material Aluminum Alloy.

M. A. I. Muslim and I. Iswanto, “Effect of Welding Parameters on Friction Stir Welding on the Mechanical Properties of Polyethylene Type Polymers: Pengaruh Parameter Pengelasan Pada Friction Stir Welding Terhadap Sifat Mekanik Polimer Jenis Polyethylene,” 2023.

R. Padmanaban, V. Ratna Kishore, and V. Balusamy, “Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys,” Procedia Eng., vol. 97, pp. 854–863, 2014, doi: 10.1016/j.proeng.2014.12.360.

D. H. Ahmed and R. Y. Oraby, “Review of Underwater Friction Stir Welding : Analysis of Joint Mechanical and Microstructure , Properties and Process Modeling,” pp. 18–21, doi: 10.31031/EME.2024.05.000614.

Structure and Properties of Aluminium Alloys.

D. M. Fouad, W. H. El-garaihy, M. M. Z. Ahmed, I. Albaijan, M. M. E. Seleman, and H. G. Salem, “Multi-Channel Spiral Twist Extruded AA5083,” pp. 1–19, 2021.

Y. Zhao, Q. Lu, Q. Wang, D. Li, F. Li, and Y. Luo, “Corrosion Behavior of Homogenized and Extruded 1100 Aluminum Alloy in Acidic Salt Spray,” 2024.

A. K. Jassim and R. K. Al-Subar, “Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding,” Int. J. Mater. Metall. Eng., vol. 11, no. 9, p. 660, 2017, doi: 10.5281/zenodo.1132443.

J. Kumar, S. Majumder, A. K. Mondal, and R. K. Verma, “Influence of rotation speed, transverse speed, and pin length during underwater friction stir welding (UW-FSW) on aluminum AA6063: A novel criterion for parametric control,” Int. J. Light. Mater. Manuf., vol. 5, no. 3, pp. 295–305, 2022, doi: 10.1016/j.ijlmm.2022.03.001.

M. F. Subkhan and M. Mulyadi, “Confirmation Experiment of Friction Stir Welding Process on Aluminum Alloy Aa-6061-T6561 on Tensile Strength and Weld Penetration: Eksperimen Konfirmasi Proses Friction Stir Welding pada Material Alumunium Alloy Aa-6061-T6561 Terhadap Kekuatan Tarik dan Penetrasi Las”.

B. Istrate and B. Sbarcea, “Correlation between Mechanical Properties — Structural Characteristics and Cavitation Resistance of Rolled Aluminum,” 2023.

F. O. Dayera, Musa Bundaris Palungan, “G-Tech : Jurnal Teknologi Terapan,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/1823/1229

Iswanto, P. H. Tjahjanti, Mulyadi, and M. Baiturrohman, “Optimizing tool angle and feeding motion to reduce wear in lathe machining: Experimental findings,” in AIP Conference Proceedings, AIP Publishing LLC, 2024, p. 40017.

M. A. Rozzaq, M. Mulyadi, M. I. Mauliana, R. Firdaus, and M. I. Khamidovna, “Comparing mesh models for optimal FSW process temperature,” in AIP Conference Proceedings, AIP Publishing LLC, 2026, p. 40029.

Y. N. Zhang, X. Cao, S. Larose, and P. Wanjara, “Review of tools for friction stir welding and processing,” Can. Metall. Q., vol. 51, no. 3, pp. 250–261, 2012, doi: 10.1179/1879139512Y.0000000015.

M. H. Firmansyah and I. Iswanto, “Influence of Parameters on The Mechanical Strength of Friction Stir Welding in High Density Polyethylene: Pengaruh Parameter terhadap Kekuatan Mekanik Pengelasan Friction Stir Welding pada High Density Polyethylene,” 2024.

B. Prabandono, A. P. Kartika Santosa, D. P. Ardani, A. Kurniawan, and M. Yusuf, “Analisis Pengujian Tarik dan Sebaran unsur pada Pengelasan Aluminium – Mild Steel menggunakan Metode Cold Metal,” Quantum Tek. J. Tek. Mesin Terap., vol. 4, no. 1, pp. 1–6, 2022, doi: 10.18196/jqt.v4i1.16092.

R. Pippan, S. Wurster, and D. Kiener, “Fracture mechanics of micro samples: Fundamental considerations,” Mater. Des., vol. 159, pp. 252–267, doi: 10.1016/j.matdes.2018.09.004.

Posted

2026-01-30