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Preface

The perception of color is of paramount importance to humans since they

routinely use color features to sense the environment, recognize objects and

convey information. Color image processing and analysis is concerned with

the manipulation of digital color images on a computer utilizing digital sig-

nal processing techniques. Like most advanced signal processing techniques,

it was, until recently, con�ned to academic institutions and research labo-

ratories that could a�ord the expensive image processing hardware needed

to handle the processing overhead required to process large numbers of color

images. However, with the advent of powerful desktop computers and the pro-

liferation of image collection devices, such as digital cameras and scanners,

color image processing techniques are now within the grasp of the general

public.

This book is aimed at researchers and practitioners that work in the area

of color image processing. Its purpose is to �ll an existing gap in scienti�c lit-

erature by presenting the state of the art research in the area. It is written at

a level which can be easily understood by a graduate student in an Electrical

and Computer Engineering or Computer Science program. Therefore, it can

be used as a textbook that covers part of a modern graduate course in digital

image processing or multimedia systems. It can also be used as a textbook

for a graduate course on digital signal processing since it contains algorithms,

design criteria and architectures for processing and analysis systems.

The book is structured into four parts. The �rst, Chapter 1, deals with

color principles and is aimed at readers who have very little prior knowl-

edge of color science. Readers interested in color image processing may read

the second part of the book (Chapters 2-5). It covers the major, although

somewhat mature, �elds of color image processing. Color image processing is

characterized by a large number of algorithms that are speci�c solutions to

speci�c problems, for example vector median �lters have been developed to

remove impulsive noise from images. Some of them are mathematical or con-

tent independent operations that are applied to each and every pixel, such

as morphological operators. Others are algorithmic in nature, in the sense

that a recursive strategy may be necessary to �nd edge pixels in an image.



The third part of the book, Chapters 6-7, deals with color image analysis and

coding techniques. The ultimate goal of color image analysis is to enhance

human-computer interaction. Recent applications of image analysis includes

compression of color images either for transmission across the internetwork or

coding of video images for video conferencing. Finally, the fourth part (Chap-

ter 8) covers emerging applications of color image processing. Color is useful

for accessing multimedia databases. Local color information, for example in

the form of color histograms, can be used to index and retrieve images from

the database. Color features can also be used to identify objects of interest,

such as human faces and hand areas, for applications ranging from video con-

ferencing, to perceptual interfaces and virtual environments. Because of the

dual nature of this investigation, processing and analysis, the logical depen-

dence of the chapters is somewhat unusual. The following diagram can help

the reader chart the course.

Logical dependence between chapters
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1. Color Spaces

1.1 Basics of Color Vision

Color is a sensation created in response to excitation of our visual system by

electromagnetic radiation known as light [1], [2], [3]. More speci�c, color is the

perceptual result of light in the visible region of the electromagnetic spectrum,

having wavelengths in the region of 400nm to 700nm, incident upon the

retina of the human eye. Physical power or radiance of the incident light is in

a spectral power distribution (SPD), often divided into 31 components each

representing a 10nm band [4]-[13].

Fig. 1.1. The visible
light spectrum

The human retina has three types of color photo-receptor cells, called

cones , which respond to radiation with somewhat di�erent spectral response

curves [4]-[5]. A fourth type of photo-receptor cells, called roads , are also

present in the retina. These are e�ective only at extremely low light levels,

for example during night vision. Although rods are important for vision, they

play no role in image reproduction [14], [15].

The branch of color science concerned with the appropriate description

and speci�cation of a color is called colorimetry [5], [10]. Since there are

exactly three types of color photo-receptor cone cells, three numerical com-

ponents are necessary and suÆcient to describe a color, providing that ap-

propriate spectral weighting functions are used. Therefore, a color can be

speci�ed by a tri-component vector. The set of all colors form a vector space

called color space or color model. The three components of a color can be

de�ned in many di�erent ways leading to various color spaces [5], [9].

Before proceeding with color speci�cation systems (color spaces), it is

appropriate to de�ne a few terms: Intensity (usually denoted I), brightness
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(Br), luminance (Y ), lightness (L�), hue (H) and saturation (S), which are

often confused or misused in the literature. The intensity (I) is a measure,

over some interval of the electromagnetic spectrum, of the 
ow of power that

is radiated from, or incident on a surface and expressed in units of watts per

square meter [4], [18], [16]. The intensity (I) is often called a linear light mea-

sure and thus is expressed in units, such as watts per square meter [4], [5].

The brightness (Br) is de�ned as the attribute of a visual sensation according

to which an area appears to emit more or less light [5]. Since brightness per-

ception is very complex, the Commission Internationale de L'Eclairage (CIE)

de�ned another quantity luminance (Y ) which is radiant power weighted by

a spectral sensitivity function that is characteristic of human vision [5]. Hu-

man vision has a nonlinear perceptual response to luminance which is called

lightness (L�). The nonlinearity is roughly logarithmic [4].

Humans interpret a color based on its lightness (L�), hue (H) and satura-

tion (S) [5]. Hue is a color attribute associated with the dominant wavelength

in a mixture of light waves. Thus hue represents the dominant color as per-

ceived by an observer; when an object is said to be red, orange, or yellow the

hue is being speci�ed. In other words, it is the attribute of a visual sensation

according to which an area appears to be similar to one of the perceived

colors: red, yellow, green and blue, or a combination of two of them [4], [5].

Saturation refers to the relative purity or the amount of white light mixed

with a hue. The pure spectrum colors are fully saturated and contain no white

light. Colors such as pink (red and white) and lavender (violet and white) are

less saturated, with the degree of saturation being inversely proportional to

the amount of white light added [1]. A color can be de-saturated by adding

white light that contains power at all wavelengths [4]. Hue and saturation

together describe the chrominance. The perception of color is basically de-

termined by luminance and chrominance [1].

To utilize color as a visual cue in multimedia, image processing, graphics

and computer vision applications, an appropriate method for representing the

color signal is needed. The di�erent color speci�cation systems or color mod-

els (color spaces or solids) address this need. Color spaces provide a rational

method to specify, order, manipulate and e�ectively display the object col-

ors taken into consideration. A well chosen representation preserves essential

information and provides insight to the visual operation needed. Thus, the

selected color model should be well suited to address the problem's statement

and solution. The process of selecting the best color representation involves

knowing how color signals are generated and what information is needed

from these signals. Although color spaces impose constraints on color per-

ception and representation they also help humans perform important tasks.

In particular, the color models may be used to de�ne colors, discriminate

between colors, judge similarity between color and identify color categories

for a number of applications [12], [13].
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Color model literature can be found in the domain of modern sciences,

such as physics, engineering, arti�cial intelligence, computer science, psychol-

ogy and philosophy. In the literature four basic color model families can be

distinguished [14]:

1. Colorimetric color models, which are based on physical measurements

of spectral re
ectance. Three primary color �lters and a photo-meter,

such as the CIE chromaticity diagram usually serve as the initial points

for such models.

2. Psychophysical color models, which are based on the human per-

ception of color. Such models are either based on subjective observation

criteria and comparative references (e.g. Munsell color model) or are built

through experimentation to comply with the human perception of color

(e.g. Hue, Saturation and Lightness model).

3. Physiologically inspired color models, which are based on the three

primaries, the three types of cones in the human retina. The Red-Green-

Blue (RGB) color space used in computer hardware is the best known

example of a physiologically inspired color model.

4. Opponent color models, which are based on perception experiments,

utilizing mainly pairwise opponent primary colors, such as the Yellow-

Blue and Red-Green color pairs.

In image processing applications, color models can alternatively be di-

vided into three categories. Namely:

1. Device-oriented color models, which are associated with input, pro-

cessing and output signal devices. Such spaces are of paramount impor-

tance in modern applications, where there is a need to specify color in a

way that is compatible with the hardware tools used to provide, manip-

ulate or receive the color signals.

2. User-oriented color models, which are utilized as a bridge between the

human operators and the hardware used to manipulate the color informa-

tion. Such models allow the user to specify color in terms of perceptual

attributes and they can be considered an experimental approximation of

the human perception of color.

3. Device-independent color models, which are used to specify color

signals independently of the characteristics of a given device or appli-

cation. Such models are of importance in applications, where color com-

parisons and transmission of visual information over networks connecting

di�erent hardware platforms are required.

In 1931, the Commission Internationale de L'Eclairage (CIE) adopted

standard color curves for a hypothetical standard observer. These color curves

specify how a speci�c spectral power distribution (SPD) of an external stim-

ulus (visible radiant light incident on the eye) can be transformed into a set

of three numbers that specify the color. The CIE color speci�cation system
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is based on the description of color as the luminance component Y and two

additional components X and Z [5]. The spectral weighting curves of X and

Z have been standardized by the CIE based on statistics from experiments

involving human observers [5]. The CIE XYZ tristimulus values can be used

to describe any color. The corresponding color space is called the CIE XYZ

color space. The XYZ model is a device independent color space that is use-

ful in applications where consistent color representation across devices with

di�erent characteristics is important. Thus, it is exceptionally useful for color

management purposes.

The CIE XYZ space is perceptually highly non uniform [4]. Therefore, it is

not appropriate for quantitative manipulations involving color perception and

is seldom used in image processing applications [4], [10]. Traditionally, color

images have been speci�ed by the non-linear red (R0), green (G0) and blue

(B0) tristimulus values where color image storage, processing and analysis is

done in this non-linear RGB (R0G0B0) color space. The red, green and blue

components are called the primary colors . In general, hardware devices such

as video cameras, color image scanners and computer monitors process the

color information based on these primary colors. Other popular color spaces

in image processing are the YIQ (North American TV standard), the HSI

(Hue, Saturation and Intensity), and the HSV (Hue, Saturation, Value) color

spaces used in computer graphics.

Although XYZ is used only indirectly it has a signi�cant role in image

processing since other color spaces can be derived from it through mathemat-

ical transforms. For example, the linear RGB color space can be transformed

to and from the CIE XYZ color space using a simple linear three-by-three

matrix transform. Similarly, other color spaces, such as non-linear RGB, YIQ

and HSI can be transformed to and from the CIE XYZ space, but might re-

quire complex and non-linear computations. The CIE have also derived and

standardized two other color spaces, called L�u�v� and L�a�b�, from the CIE

XYZ color space which are perceptually uniform [5].

The rest of this chapter is devoted to the analysis of the di�erent color

spaces in use today. The di�erent color representation models are discussed

and analyzed in detail with emphasis placed on motivation and design char-

acteristics.

1.2 The CIE Chromaticity-based Models

Over the years, the CIE committee has sponsored the research of color per-

ception. This has lead to a class of widely used mathematical color models.

The derivation of these models has been based on a number of color matching

experiments, where an observer judges whether two parts of a visual stimu-

lus match in appearance. Since the colorimetry experiments are based on a

matching procedure in which the human observer judges the visual similarity

of two areas the theoretical model predicts only matching and not perceived
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colors. Through these experiments it was found that light of almost any spec-

tral composition can be matched by mixtures of only three primaries (lights

of a single wavelength). The CIE had de�ned a number of standard observer

color matching functions by compiling experiments with di�erent observers,

di�erent light sources and with various power and spectral compositions.

Based on the experiments performed by CIE early in this century, it was

determined that these three primary colors can be broadly chosen, provided

that they are independent.

The CIE's experimental matching laws allow for the representation of

colors as vectors in a three-dimensional space de�ned by the three primary

colors. In this way, changes between color spaces can be accomplished easily.

The next few paragraphs will brie
y outline how such a task can be accom-

plished.

According to experiments conducted by Thomas Young in the nineteenth

century [19], and later validated by other researchers [20], there are three

di�erent types of cones in the human retina, each with di�erent absorption

spectra: S1(�), S2(�), S3(�), where 380���780 (nm). These approximately

peak in the yellow-green, green and blue regions of the electromagnetic spec-

trum with signi�cant overlap between S1 and S2. For each wavelength the

absorption spectra provides the weight with which light of a given spectral

distribution (SPD) contributes to the cone's output. Based on Young's the-

ory, the color sensation that is produced by a light having SPD C(�) can be

de�ned as:

�i(C) =

Z
�2

�1

Si(�)C(�) d� (1.1)

for i = 1; 2; 3. According to (1.1) any two colors C1(�), C2(�) such that

�i(C1) = �i(C2) , i = 1; 2; 3 will be perceived to be identical even if C1(�)

and C2(�) are di�erent. This well known phenomenon of spectrally di�erent

stimuli that are indistinguishable to a human observer is called metamers

[14] and constitutes a rather dramatic illustration of the perceptual nature

of color and the limitations of the color modeling process. Assume that three

primary colors Ck , k = 1; 2; 3 with SPD Ck(�) are available and letZ
Ck(�) d� = 1 (1.2)

To match a color C with spectral energy distribution C(�), the three pri-

maries are mixed in proportions of �k, k = 1; 2; 3. Their linear combinationP3

k=1 �kCk(�) should be perceived as C(�). Substituting this into (1.1) leads

to:

�i(C) =

Z
(

3X
k=1

�kCk(�))Si(�) d� =

3X
k=1

�k

Z
Si(�)Ck(�) d� (1.3)

for i = 1; 2; 3.



6

The quantity
R
Si(�)Ck(�) d� can be interpreted as the ith, i = 1; 2; 3

cone response generated by one unit of the kth primary color:

�i;k = �i(Ck) =

Z
Si(�)Ck(�) d� (1.4)

Therefore, the color matching equations are:

3X
k=1

�k�i;k = �i(C) =

Z
Si(�)C(�) d� (1.5)

assuming a certain set of primary colors Ck(�) and spectral sensitivity curves

Si(�). For a given arbitrary color, �k can be found by simply solving (1.4)

and (1.5).

Following the same approach wk can be de�ned as the amount of the

k
th primary required to match the reference white, providing that there is

available a reference white light source with known energy distribution w(�).

In such a case, the values obtained through

Tk(C) =
�k

wk

(1.6)

for k = 1; 2; 3 are called tristimulus values of the color C, and determine

the relative amounts of primitives required to match that color. The tris-

timulus values of any given color C(�) can be obtained given the spectral

tristimulus values Tk(�), which are de�ned as the tristimulus values of unit

energy spectral color at wavelength � . The spectral tristimulus Tk(�) pro-

vide the so-called spectral matching curves which are obtained by setting

C(�) = Æ(� � �
�) in (1.5).

The spectral matching curves for a particular choice of color primaries

with an approximately red, green and blue appearance were de�ned in the

CIE 1931 standard [9]. A set of pure monochromatic primaries are used, blue

(435:8nm), green (546:1nm) and red (700nm). In Figures 1.2 and 1.3 the Y-

axis indicates the relative amount of each primary needed to match a stimulus

of the wavelength reported on the X-axis. It can be seen that some of the

values are negative. Negative numbers require that the primary in question

be added to the opposite side of the original stimulus. Since negative sources

are not physically realizable it can be concluded that the arbitrary set of

three primary sources cannot match all the visible colors. However, for any

given color a suitable set of three primary colors can be found.

Based on the assumption that the human visual system behaves linearly,

the CIE had de�ned spectral matching curves in terms of virtual primaries.

This constitutes a linear transformation such that the spectral matching

curves are all positive and thus immediately applicable for a range of prac-

tical situations. The end results are referred to as the CIE 1931 standard

observer matching curves and the individual curves (functions) are labeled
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�x, �y, �z respectively. In the CIE 1931 standard the matching curves were se-

lected so that �y was proportional to the human luminosity function, which

was an experimentally determined measure of the perceived brightness of

monochromatic light.
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Fig. 1.2. The CIE XYZ
color matching functions
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Fig. 1.3. The CIE RGB
color matching functions

If the spectral energy distribution C(�) of a stimulus is given, then the

chromaticity coordinates can be determined in two stages. First, the tristim-

ulus values X , Y , Z are calculated as follows:
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X =

Z
�x(�)C(�) d� (1.7)

Y =

Z
�y(�)C(�) d� (1.8)

Z =

Z
�z(�)C(�) d� (1.9)

The new set of primaries must satisfy the following conditions:

1. The XYZ components for all visible colors should be non-negative.

2. Two of the primaries should have zero luminance.

3. As many spectral colors as possible should have at least one zero XYZ

component.

Secondly, normalized tristimulus values, called chromaticity coordinates,

are calculated based on the primaries as follows:

x =
X

X + Y + Z

(1.10)

y =
Y

X + Y + Z

(1.11)

z =
Z

X + Y + Z

(1.12)

Clearly z = 1 � (x + y) and hence only two coordinates are necessary to

describe a color match. Therefore, the chromaticity coordinates project the

3�D color solid on a plane, and they are usually plotted as a parametric x�y

plot with z implicitly evaluated as z = 1 � (x + y). This diagram is known

as the chromaticity diagram and has a number of interesting properties that

are used extensively in image processing. In particular,

1. The chromaticity coordinates (x; y) jointly represent the chrominance

components of a given color.

2. The entire color space can be represented by the coordinates (x; y; T ), in

which T = constant is a given chrominance plane.

3. The chromaticity diagram represents every physically realizable color as

a point within a well de�ned boundary. The boundary represents the

primary sources. The boundary vertices have coordinates de�ned by the

chromaticities of the primaries.

4. A white point is located in the center of the chromaticity diagram. More

saturated colors radiate outwards from white. Complementary pure col-

ors can easily be determined from the diagram.

5. In the chromaticity diagram, the color perception obtained through the

superposition of light coming from two di�erent sources, lies on a straight

line between the points representing the component lights in the diagram.
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6. Since the chromaticity diagram reveals the range of all colors which can

be produced by means of the three primaries (gamut), it can be used to

guide the selection of primaries subject to design constraints and techni-

cal speci�cations.

7. The chromaticity diagram can be utilized to determine the hue and sat-

uration of a given color since it represents chrominance by eliminating

luminance. Based on the initial objectives set out by CIE, two of the

primaries, X and Z, have zero luminance while the primary Y is the

luminance indicator determined by the light-eÆciency function V (�) at

the spectral matching curve �y. Thus, in the chromaticity diagram the

dominant wavelength (hue) can be de�ned as the intersection between a

line drawn from the reference white through the given color to the bound-

aries of the diagram. Once the hue has been determined, then the purity

of a given color can be found as the ratio r = wc

wp
of the line segments

that connect the reference white with the color (wc) to the line segment

between the reference white and the dominant wavelength/hue (wp).

Fig. 1.4. The chromaticity dia-
gram

1.3 The CIE-RGB Color Model

The fundamental assumption behind modern colorimetry theory, as it applies

to image processing tasks, is that the initial basis for color vision lies in the

di�erent excitation of three classes of photo-receptor cones in the retina.

These include the red, green and blue receptors, which de�ne a trichromatic
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space whose basis of primaries are pure colors in the short, medium and high

portions of the visible spectrum [4], [5], [10].

As a result of the assumed linear nature of light, and due to the principle

of superposition, the colors of a mixture are a function of the primaries and

the fraction of each primary that is mixed. Throughout this analysis, the

primaries need not be known, just their tristimulus values. This principle

is called additive reproduction. It is employed in image and video devices

used today where the color spectra from red, green and blue light beams are

physically summed at the surface of the projection screen. Direct view color

CRT's (cathode ray tube) also utilize additive reproduction. In particular,

the CRT's screen consists of small dots which produce red, green and blue

light. When the screen is viewed from a distance the spectra of these dots

add up in the retina of the observer. In practice, it is possible to reproduce

a large number of colors by additive reproduction using the three primaries:

red, green and blue. The colors that result from additive reproduction are

completely determined by the three primaries.

The video projectors and the color CRT's in use today utilize a color space

collectively known under the name RGB, which is based on the red, green and

blue primaries and a white reference point. To uniquely specify a color space

based on the three primary colors the chromaticity values of each primary

color and a white reference point need to be speci�ed. The gamut of colors

which can be mixed from the set of the RGB primaries is given in the (x; y)

chromaticity diagram by a triangle whose vertices are the chromaticities of

the primaries (Maxwell triangle) [5], [20]. This is shown in Figure 1.5.
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Fig. 1.5. The Maxwell
triangle
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Fig. 1.6. The RGB color
model

In the red, green and blue system the color solid generated is a bounded

subset of the space generated by each primary. Using an appropriate scale

along each primary axis, the space can normalized, so that the maximum

is 1. Therefore, as can be seen in Figure 1.6 the RGB color solid is a cube,

called the RGB cube. The origin of the cube, de�ned as (0; 0; 0) corresponds

to black and the point with coordinates (1; 1; 1) corresponds to the system's

brightest white.

In image processing, computer graphics and multimedia systems the RGB

representation is the most often used. A digital color image is represented

by a two dimensional array of three variate vectors which are comprised

of the pixel's red, green and blue values. However, these pixel values are

relative to the three primary colors which form the color space. As it was

mentioned earlier, to uniquely de�ne a color space, the chromaticities of the

three primary colors and the reference white must be speci�ed. If these are

not speci�ed within the chromaticity diagram, the pixel values which are used

in the digital representation of the color image are meaningless [16].

In practice, although a number of RGB space variants have been de�ned

and are in use today, their exact speci�cations are usually not available to the

end-user. Multimedia users assume that all digital images are represented in

the same RGB space and thus use, compare or manipulate them directly no

matter where these images are from. If a color digital image is represented in

the RGB system and no information about its chromaticity characteristics is

available, the user cannot accurately reproduce or manipulate the image.

Although in computing and multimedia systems there are no standard

primaries or white point chromaticities, a number of color space standards



12

have been de�ned and used in the television industry. Among them are the

Federal Communication Commission of America (FCC) 1953 primaries, the

Society of Motion Picture and Television Engineers (SMPTE) `C' primaries,

the European Broadcasting Union (EBU) primaries and the ITU-R BT.709

standard (formerly known as CCIR Rec. 709) [24]. Most of these standards

use a white reference point known as CIE D65 but other reference points,

such as the CIE illuminant E are also be used [4].

In additive color mixtures the white point is de�ned as the one with

equal red, green and blue components. However, there is no unique physical

or perceptual de�nition of white, so the characteristics of the white reference

point should be de�ned prior to its utilization in the color space de�nition.

In the CIE illuminant E, or equal-energy illuminant, white is de�ned as

the point whose spectral power distribution is uniform throughout the visible

spectrum. A more realistic reference white, which approximates daylight has

been speci�ed numerically by the CIE as illuminant D65. The D65 reference

white is the one most often used for color interchange and the reference point

used throughout this work.

The appropriate red, green and blue chromaticities are determined by

the technology employed, such as the sensors in the cameras, the phosphors

within the CTR's and the illuminants used. The standards are an attempt to

quantify the industry's practice. For example, in the FCC-NTSC standard,

the set of primaries and speci�ed white reference point were representative

of the phosphors used in color CRTs of a certain era.

Although the sensor technology has changed over the years in response to

market demands for brighter television receivers, the standards remain the

same. To alleviate this problem, the European Broadcasting Union (EBU)

has established a new standard (EBU Tech 3213). It is de�ned in Table 1.1.

Table 1.1. EBU Tech 3213 Primaries

Colorimetry Red Green Blue White D65

x 0.640 0.290 0.150 0.3127

y 0.330 0.600 0.060 0.3290

z 0.030 0.110 0.790 0.3582

Recently, an international agreement has �nally been reached on the pri-

maries for the High De�nition Television (HDTV) speci�cation. These pri-

maries are representative of contemporary monitors in computing, computer

graphics and studio video production. The standard is known as ITU-R

BT.709 and its primaries along with the D65 reference white are de�ned

in Table 1.2.

The di�erent RGB systems can be converted amongst each other using a

linear transformation assuming that the white references values being used

are known. As an example, if it is assumed that the D65 is used in both
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Table 1.2. EBU Tech 3213 Primaries

Colorimetry Red Green Blue White D65

x 0.640 0.300 0.150 0.3127

y 0.330 0.600 0.060 0.3290

z 0.030 0.100 0.790 0.3582

systems, then the conversion between the ITU-R BT.709 and SMPTE `C'

primaries is de�ned by the following matrix transformation:2
4R709

G709

B709

3
5 =

2
4 0:939555 0:050173 0:010272

0:017775 0:9655795 0:016430

�0:001622 �0:004371 1:005993

3
5
2
4Rc

Gc

Bc

3
5 (1.13)

where R709, G709, B709 are the linear red, green and blue components of the

ITU-R BT.709 and Rc, Gc, Bc are the linear components in the SMPTE `C'

system. The conversion should be carried out in the linear voltage domain,

where the pixel values must �rst be converted into linear voltages. This is

achieved by applying the so-called gamma correction.

1.4 Gamma Correction

In image processing, computer graphics, digital video and photography, the

symbol 
 represents a numerical parameter which describes the nonlinear-

ity of the intensity reproduction. The cathode-ray tube (CRT) employed in

modern computing systems is nonlinear in the sense that the intensity of

light reproduced at the screen of a CRT monitor is a nonlinear function of

the voltage input. A CRT has a power law response to applied voltage. The

light intensity produced on the display is proportional to the applied voltage

raised to a power denoted by 
 [4], [16], [17]. Thus, the produced intensity by

the CRT and the voltage applied on the CRT have the following relationship:

Iint = (v0)



(1.14)

The relationship which is called the `�ve-halves' power law is dictated by

the physics of the CRT electron gun. The above function applies to a single

electron gun of a gray-scale CRT or each of the three red, green and blue

electron guns of a color CRT. The functions associated with the three guns

on a color CRT are very similar to each other but not necessarily identical.

The actual value of 
 for a particular CRT may range from about 2.3 to 2.6

although most practitioners frequently claim values lower than 2.2 for video

monitors.

The process of pre-computing for the nonlinearity by computing a volt-

age signal from an intensity value is called gamma correction. The function

required is approximately a 0:45 power function. In image processing appli-

cations, gamma correction is accomplished by analog circuits at the camera.



14

In computer graphics, gamma correction is usually accomplished by incor-

porating the function into a frame bu�er lookup table. Although in image

processing systems gamma was originally used to refer to the nonlinearity

of the CRT, it is generalized to refer to the nonlinearity of an entire image

processing system. The 
 value of an image or an image processing system

can be calculated by multiplying the 
's of its individual components from

the image capture stage to the display.

The model used in (1.14) can cause wide variability in the value of gamma

mainly due to the black level errors since it forces the zero voltage to map to

zero intensity for any value of gamma. A slightly di�erent model can be used

in order to resolve the black level error. The modi�ed model is given as:

Iint = (voltage+ �)
2:5

(1.15)

By �xing the exponent of the power function at 2.5 and using the single

parameter to accommodate black level errors the modi�ed model �ts the

observed nonlinearity much better than the variable gamma model in (1.14).

The voltage-to-intensity function de�ned in (1.15) is nearly the inverse

of the luminance-to-brightness relationship of human vision. Human vision

de�nes luminance as a weighted mixture of the spectral energy where the

weights are determined by the characteristics of the human retina. The CIE

has standardized a weighting function which relates spectral power to lu-

minance. In this standardized function, the perceived luminance by humans

relates to the physical luminance (proportional to intensity) by the following

equation:

L
� =

(
116( Y

Yn
)
1

3 � 16 if Y

Yn
> 0:008856

903:3( Y
Yn
)
1

3 if Y

Yn
�0:008856

(1.16)

where Yn is the luminance of the reference white, usually normalized either

to 1.0 or 100. Thus, the lightness perceived by humans is, approximately,

the cubic root of the luminance. The lightness sensation can be computed

as intensity raised, approximately to the third power. Thus, the entire image

processing system can be considered linear or almost linear.

To compensate for the nonlinearity of the display (CRT), gamma cor-

rection with a power of ( 1


) can be used so that the overall system 
 is

approximately 1.

In a video system, the gamma correction is applied to the camera for pre-

computing the nonlinearity of the display. The gamma correction performs

the following transfer function:

voltage
0 = (voltage)

1


 (1.17)

where voltage is the voltage generated by the camera sensors. The gamma

corrected value is the reciprocal of the gamma resulting in a transfer function

with unit power exponent.
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To achieve subjectively pleasing images, the end-to-end power function

of the overall imaging system should be around 1.1 or 1.2 instead of the

mathematically correct linear system.

The REC 709 speci�es a power exponent of 0.45 at the camera which,

in conjunction with the 2.5 exponent at the display, results in an overall

exponent value of about 1.13. If the 
 value is greater than 1, the image

appears sharper but the scene contrast range, which can be reproduced, is

reduced. On the other hand, reducing the 
 value has a tendency to make

the image appear soft and washed out.

For color images, the linear values R;G, and B values should be converted

into nonlinear voltages R0, G0 and B0 through the application of the gamma

correction process. The color CRT will then convert R0, G0 and B0 into linear

red, green and blue light to reproduce the original color.

The ITU-R BT.709 standard recommends a gamma exponent value of 0.45

for the High De�nition Television. In practical systems, such as TV cameras,

certain modi�cations are required to ensure proper operation near the dark

regions of an image, where the slope of a pure power function is in�nite at

zero. The red tristimulus (linear light) component may be gamma-corrected

at the camera by applying the following convention:

R
0

709 =

�
4:5R if R�0:018

1:099R0:45 � 0:099 if 0:018 < R

(1.18)

with R denoting the linear light and R
0

709 the resulting gamma corrected

value. The computations are identical for the G and B components.

The linear R;G, and B are normally in the range [0; 1] when color images

are used in digital form. The software library translates these 
oating point

values to 8-bit integers in the range of 0 to 255 for use by the graphics

hardware. Thus, the gamma corrected value should be:

R
0 = 255R

1


 (1.19)

The constant 255 in (1.19) is added during the A/D process. However, gamma

correction is usually performed in cameras, and thus, pixel values are in

most cases nonlinear voltages. Thus, intensity values stored in the frame-

bu�er of the computing device are gamma corrected on-the-
y by hardware

look up tables on their way to the computer monitor display. Modern image

processing systems utilize a wide variety of sources of color images, such as

images captured by digital cameras, scanned images, digitized video frames

and computer generated images. Digitized video frames usually have a gamma

correction value between 0.5 and 0.45. Digital scanners assume an output

gamma in the range of 1.4 to 2.2 and they perform their gamma correction

accordingly. For computer generated images the gamma correction value is

usually unknown. In the absence of the actual gamma value the recommended

gamma correction is 0.45.
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In summary, pixel values alone cannot specify the actual color. The

gamma correction value used for capturing or generating the color image

is needed. Thus, two images which have been captured with two cameras

operating under di�erent gamma correction values will represent colors dif-

ferently even if the same primaries and the same white reference point are

used.

1.5 Linear and Non-linear RGB Color Spaces

The image processing literature rarely discriminates between linear RGB and

non-linear (R0G0B0) gamma corrected values. For example, in the JPEG and

MPEG standards and in image �ltering, non-linear RGB (R0G0B0) color val-

ues are implicit. Unacceptable results are obtained when JPEG or MPEG

schemes are applied to linear RGB image data [4]. On the other hand, in

computer graphics, linear RGB values are implicitly used [4]. Therefore, it

is very important to understand the di�erence between linear and non-linear

RGB values and be aware of which values are used in an image processing

application. Hereafter, the notation R0G0B0 will be used for non-linear RGB

values so that they can be clearly distinguished from the linear RGB values.

1.5.1 Linear RGB Color Space

As mentioned earlier, intensity is a measure, over some interval of the elec-

tromagnetic spectrum, of the 
ow of power that is radiated from an object.

Intensity is often called a linear light measure. The linear R value is propor-

tional to the intensity of the physical power that is radiated from an object

around the 700 nm band of the visible spectrum. Similarly, a linear G value

corresponds to the 546:1 nm band and a linear B value corresponds to the

435:8 nm band. As a result the linear RGB space is device independent and

used in some color management systems to achieve color consistency across

diverse devices.

The linear RGB values in the range [0, 1] can be converted to the cor-

responding CIE XYZ values in the range [0, 1] using the following matrix

transformation [4]:2
4X
Y

Z

3
5 =

2
40:4125 0:3576 0:18040:2127 0:7152 0:0722

0:0193 0:1192 0:9502

3
5
2
4R
G

B

3
5 (1.20)

The transformation from CIE XYZ values in the range [0, 1] to RGB values

in the range [0, 1] is de�ned by:2
4R
G

B

3
5 =

2
4 3:2405 �1:5372 �0:4985

�0:9693 1:8760 0:0416

0:0556 �0:2040 1:0573

3
5
2
4X
Y

Z

3
5 (1.21)
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Alternatively, tristimulus XYZ values can be obtained from the linear RGB

values through the following matrix [5]:2
4X
Y

Z

3
5 =

2
40:490 0:310 0:2000:117 0:812 0:011

0:000 0:010 0:990

3
5
2
4R
G

B

3
5 (1.22)

The linear RGB values are a physical representation of the chromatic light

radiated from an object. However, the perceptual response of the human

visual system to radiate red, green, and blue intensities is non-linear and

more complex. The linear RGB space is, perceptually, highly non-uniform

and not suitable for numerical analysis of the perceptual attributes. Thus,

the linear RGB values are very rarely used to represent an image. On the

contrary, non-linear R0G0B0 values are traditionally used in image processing

applications such as �ltering.

1.5.2 Non-linear RGB Color Space

When an image acquisition system, e.g. a video camera, is used to capture the

image of an object, the camera is exposed to the linear light radiated from the

object. The linear RGB intensities incident on the camera are transformed

to non-linear RGB signals using gamma correction. The transformation to

non-linear R0G0B0 values in the range [0, 1] from linear RGB values in the

range [0, 1] is de�ned by:

R
0 =

(
4:5R; if R � 0:018

1:099R
1



C � 0:099; otherwise

G
0 =

(
4:5G; if G � 0:018

1:099G
1



C � 0:099; otherwise

(1.23)

B
0 =

(
4:5B; if B � 0:018

1:099B
1



C � 0:099; otherwise

where 
C is known as the gamma factor of the camera or the acquisition

device. The value of 
C that is commonly used in video cameras is 1
0:45

(' 2:22) [4]. The above transformation is graphically depicted in Figure 1.7.

The linear segment near low intensities minimizes the e�ect of sensor noise

in practical cameras and scanners.

Thus, the digital values of the image pixels acquired from the object and

stored within a camera or a scanner are the R0G0B0 values usually converted

to the range of 0 to 255. Three bytes are then required to represent the three

components, R0, G0, and B
0 of a color image pixel with one byte for each

component. It is these non-linear R0G0B0 values that are stored as image

data �les in computers and are used in image processing applications. The

RGB symbol used in image processing literature usually refers to the R0G0B0
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Fig. 1.7. Linear to Non-
linear Light Transforma-
tion

values and, therefore, care must be taken in color space conversions and other

relevant calculations.

Suppose the acquired image of an object needs to be displayed in a display

device such as a computer monitor. Ideally, a user would like to see (perceive)

the exact reproduction of the object. As pointed out, the image data is in

R0G0B0 values. Signals (usually voltage) proportional to the R0G0B0 values

will be applied to the red, green, and blue guns of the CRT (Cathode Ray

Tube) respectively. The intensity of the red, green, and blue lights generated

by the CRT is a non-linear function of the applied signal. The non-linearity

of the CRT is a function of the electrostatics of the cathode and the grid

of the electron gun. In order to achieve correct reproduction of intensities,

an ideal monitor should invert the transformation at the acquisition device

(camera) so that the intensities generated are identical to the linear RGB

intensities that were radiated from the object and incident in the acquisition

device. Only then will the perception of the displayed image be identical to

the perceived object.

A conventional CRT has a power-law response, as depicted in Figure 1.8.

This power-law response, which inverts the non-linear (R0G0B0) values in the

range [0, 1] back to linear RGB values in the range [0, 1], is de�ned by the

following power function [4]:

R =

(
R

0

4:5
; if R0 � 0:018�

R
0 + 0:099
1:099

�
D
otherwise

G =

(
G

0

4:5
; if G0 � 0:018�

G
0 + 0:099
1:099

�
D
otherwise

(1.24)
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B =

(
B

0

4:5
; if B0 � 0:018�

B
0 + 0:099
1:099

�
D
otherwise

The value of the power function, 
D, is known as the gamma factor of the

display device or CRT. Normal display devices have 
D in the range of 2:2

to 2:45. For exact reproduction of the intensities, gamma factor of the dis-

play device must be equal to the gamma factor of the acquisition device

(
C = 
D). Therefore, a CRT with a gamma factor of 2:2 should correctly

reproduce the intensities.
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The transformations that take place throughout the process of image ac-

quisition to image display and perception are illustrated in Figure 1.9.

Digital

Video

Camera

Object Storage CRT HVS

Intensities
Perceived

R

G

B

R

G

B

R’

G’

B’

R’

G’

B’

R’
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B’

Fig. 1.9. Transformation of Intensities from Image Capture to Image Display

It is obvious from the above discussion that the R0G0B0 space is a device

dependent space. Suppose a color image, represented in the R0G0B0 space,

is displayed on two computer monitors having di�erent gamma factors. The

red, green, and blue intensities produced by the monitors will not be identical

and the displayed images might have di�erent appearances. Device dependent

spaces cannot be used if color consistency across various devices, such as

display devices, printers, etc., is of primary concern. However, similar devices
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(e.g. two computer monitors) usually have similar gamma factors and in such

cases device dependency might not be an important issue.

As mentioned before, the human visual system has a non-linear perceptual

response to intensity, which is roughly logarithmic and is, approximately,

the inverse of a conventional CRT's non-linearity [4]. In other words, the

perceived red, green, and blue intensities are approximately related to the

R0G0B0 values. Due to this fact, computations involving R0G0B0 values have

an approximate relation to the human color perception and the R0G0B0 space

is less perceptually non-uniform relative to the CIE XYZ and linear RGB

spaces [4]. Hence, distance measures de�ned between the R0G0B0 values of

two color vectors provide a computationally simple estimation of the error

between them. This is very useful for real-time applications and systems in

which computational resources are at premium.

However, the R0G0B0 space is not adequately uniform, and it cannot be

used for accurate perceptual computations. In such instances, perceptually

uniform color spaces (e.g. L�u�v� and L�a�b�) that are derived based on

the attributes of human color perception are more desirable than the R0G0B0

space [4].

1.6 Color Spaces Linearly Related to the RGB

In transmitting color images through a computer-centric network, all three

primaries should be transmitted. Thus, storage or transmission of a color

image using RGB components requires a channel capacity three times that

of gray scale images. To reduce these requirements and to boost bandwidth

utilization, the properties of the human visual system must be taken into

consideration. There is strong evidence that the human visual system forms

an achromatic channel and two chromatic color-di�erence channels in the

retina. Consequently, a color image can be represented as a wide band com-

ponent corresponding to brightness, and two narrow band color components

with considerably less data rate than that allocated to brightness.

Since the large percentage (around 60%) of brightness is attributed to

the green primary, then it is advantageous to base the color components on

the other two primaries. The simplest way to form the two color components

is to remove them by subtraction, (e.g. the brightness from the blue and

red primaries). In this way the unit RGB color cube is transformed into the

luminance Y and two color di�erence components B � Y and R � Y [33],

[34]. Once these color di�erence components have been formed, they can be

sub-sampled to reduce the bandwidth or data capacity without any visible

degradation in performance. The color di�erence components are calculated

from nonlinear gamma corrected values R0,G0,B0 rather than the tristimulus

(linear voltage) R;G;B primary components.

According to the CIE standards the color imaging system should operate

similarly to a gray scale system, with a CIE luminance component Y formed
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as a weighted sum of RGB tristimulus values. The coeÆcients in the weighted

sum correspond to the sensitivity of the human visual system to each of the

RGB primaries. The coeÆcients are also a function of the chromaticity of

the white reference point used. International agreement on the REC. 709

standard provides a value for the luminance component based on the REC.

709 primaries [24]. Thus, the Y 0

709 luminance equation is:

Y
0

709 = 0:2125R0

709 + 0:7154G0

709 + 0:0721B0

709 (1.25)

where R0

709, B
0

709 and G
0

709 are the gamma-corrected (nonlinear) values of

the three primaries. The two color di�erence components B0

709 � Y
0

709 and

R
0

709 � Y
0

709 can be formed on the basis of the above equation.

Various scale factors are applied to the basic color di�erence components

for di�erent applications. For example, the Y 0
PRPB is used for component

analog video, such as BetaCam, and Y
0
CBCR for component digital video,

such as studio video, JPEG and MPEG. Kodak's YCC (PhotoCD model) uses

scale factors optimized for the gamut of �lm colors [31]. All these systems

utilize di�erent versions of the (Y 0

709; B
0

709�Y
0

709; R
0

709�Y
0

709) which are scaled

to place the extrema of the component signals at more convenient values.

In particular, the Y 0
PRPB system used in component analog equipment

is de�ned by the following set:2
4Y 0

601

PB

PR

3
5 =

2
4 0:299 0:587 0:114

�0:168736 �0:331264 0:5

0:5 �0:418686 �0:081312

3
5
2
4R0

G
0

B
0

3
5 (1.26)

and 2
4R0

G
0

B
0

3
5 =

2
41: 0: 1:402

1: �0:344136 �0:714136

1: 1:772 0:

3
5
2
4Y 0

601

PB

PR

3
5 (1.27)

The �rst row comprises the luminance coeÆcients which sum to unity. For

each of the other two columns the coeÆcients sum to zero, a necessity for

color di�erence formulas. The 0.5 weights re
ect the maximum excursion of

PB and PR for the blue and the red primaries.

The Y0CBCR is the Rec ITU-R BT. 601-4 international standard for

studio quality component digital video. The luminance signal is coded in 8

bits. The Y 0 has an excursion of 219 with an o�set of 16, with the black point

coded at 16 and the white at code 235. Color di�erences are also coded in

8-bit forms with excursions of 112 and o�set of 128 for a range of 16 through

240 inclusive.

To compute Y0CBCR from nonlinear R0G0B0 in the range of [0; 1] the

following set should be used:2
4Y 0

601

CB

CR

3
5 =

2
4 16

128

128

3
5+

2
4 65:481 128:553 24:966

�37:797 �74:203 112:0

112:0 �93:786 �18:214

3
5
2
4R0

G
0

B
0

3
5 (1.28)
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with the inverse transform2
4R0

G
0

B
0

3
5 =

2
40:00456821 0:0 0:00625893

0:00456621 �0:00153632 �0:00318811

0:00456621 0:00791071 0:0

3
5 �

0
@
2
4Y 0

601

PB

PR

3
5�

2
4 16

128

128

3
5
1
A (1.29)

When 8-bit R0G0B0 are used, black is coded at 0 and white is at 255. To encode

Y0CBCR from R0G0B0 in the range of [0; 255] using 8-bit binary arithmetic the

transformation matrix should be scaled by 256
255

. The resulting transformation

pair is as follows:2
4Y 0

601

PB

PR

3
5 =

2
4 16

128

128

3
5+ 1

256

2
4 65:481 128:553 24:966

�37:797 �74:203 112:0

112:0 �93:786 �18:214

3
5
2
4R0

255

G
0

255

B
0

255

3
5 (1.30)

where R0

255 is the gamma-corrected value, using a gamma-correction lookup

table for 1


. This yields the RGB intensity values with integer components

between 0 and 255 which are gamma-corrected by the hardware. To obtain

R0G0B0 values in the range [0; 255] from Y0CBCR using 8-bit arithmetic the

following transformation should be used:2
4R0

G
0

B
0

3
5 =

1

256

2
4 0:00456821 0:0 0:00625893

0:00456621 �0:00153632 �0:00318811

0:00456621 0:00791071 0:0

3
5

0
@
2
4Y 0

601

PB

PR

3
5�

2
4 16

128

128

3
5
1
A (1.31)

Some of the coeÆcients when scaled by 1
256

may be larger than unity and,

thus some clipping may be required so that they fall within the acceptable

RGB range.

The Kodak YCC color space is another example of a predistorted color

space, which has been designed for the storage of still color images on the

Photo-CD. It is derived from the predistorted (gamma-corrected) R0G0B0 val-

ues using the ITU-R BT.709 recommended white reference point, primaries,

and gamma correction values. The YCC space is similar to the Y0CBCR dis-

cussed, although scaling of B0 � Y
0 and R

0 � Y
0 is asymmetrical in order to

accommodate a wide color gamut, similar to that of a photographic �lm. In

particular the following relationship holds for Photo-CD compressed formats:

Y
0 =

255

1:402
Y
0

601 (1.32)

C1 = 156 + 111:40(B0

� Y
0) (1.33)
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C2 = 137 + 135:64(R0

� Y
0) (1.34)

The two chrominance components are compressed by factors of 2 both hori-

zontally and vertically. To reproduce predistorted R0G0B0 values in the range

of [0; 1] from integer PhotoYCC components the following transform is ap-

plied:2
4R0

G
0

B
0

3
5 =

1

256

2
4 0:00549804 0:0 0:0051681

0:00549804 �0:0015446 �0:0026325

0:00549804 0:0079533 0:0

3
5

0
@
2
4 Y 0

C1

C2

3
5�

2
4 0

156

137

3
5
1
A (1.35)

The B0�Y
0 and R0�Y

0 components can be converted into polar coordinates

to represent the perceptual attributes of hue and saturation. The values can

be computed using the following formulas [34]:

H = tan
�1(

B
0 � Y

0

R
0 � Y

0

) (1.36)

S = ((B0

� Y
0)
2
+ (R0

� Y
0)
2
)
1

2
(1.37)

where the saturation S is the length of the vector from the origin of the

chromatic plane to the speci�c color and the hue H is the angle between the

R
0 � Y

0 axis and the saturation component [33].

1.7 The YIQ Color Space

The YIQ color speci�cation system, used in commercial color TV broadcast-

ing and video systems, is based upon the color television standard that was

adopted in the 1950s by the National Television Standard committee (NTSC)

[10], [1], [27], [28]. Basically, YIQ is a recoding of non-linear R0G0B0 for trans-

mission eÆciency and for maintaining compatibility with monochrome TV

standards [1], [4]. In fact, the Y component of the YIQ system provides all

the video information required by a monochrome television system.

The YIQ model was designed to take advantage of the human visual

system's greater sensitivity to change in luminance than to changes in hue or

saturation [1]. Due to these characteristics of the human visual system, it is

useful in a video system to specify a color with a component representative

of luminance Y and two other components: the in-phase I , an orange-cyan

axis, and the quadrature Q component, the magenta-green axis. The two

chrominance components are used to jointly represent hue and saturation .
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With this model, it is possible to convey the component representative of

luminance Y in such a way that noise (or quantization) introduced in trans-

mission, processing and storage is minimal and has a perceptually similar

e�ect across the entire tone scale from black to white [4]. This is done by

allowing more bandwidth (bits) to code the luminance (Y ) and less band-

width (bits) to code the chrominance (I and Q) for eÆcient transmission and

storage purposes without introducing large perceptual errors due to quanti-

zation [1]. Another implication is that the luminance (Y ) component of an

image can be processed without a�ecting its chrominance (color content). For

instance, histogram equalization to a color image represented in YIQ format

can be done simply by applying histogram equalization to its Y component

[1]. The relative colors in the image are not a�ected by this process.

The ideal way to accomplish these goals would be to form a luminance

component (Y ) by applying a matrix transform to the linear RGB compo-

nents and then subjecting the luminance (Y ) to a non-linear transfer function

to achieve a component similar to lightness L�. However, there are practical

reasons in a video system why these operations are performed in the oppo-

site order [4]. First, gamma correction is applied to each of the linear RGB.

Then, a weighted sum of the nonlinear components is computed to form a

component representative of luminance Y . The resulting component (luma)

is related to luminance but is not the same as the CIE luminance Y although

the same symbol is used for both of them.

The nonlinear RGB to YIQ conversion is de�ned by the following matrix

transformation [4], [1]:2
4Y
I

Q

3
5 =

2
4 0:299 0:587 0:114

0:596 �0:275 �0:321

0:212 �0:523 0:311

3
5
2
4R0

G
0

B
0

3
5 (1.38)

As can be seen from the above transformation, the blue component has a

small contribution to the brightness sensation (luma Y ) despite the fact that

human vision has extraordinarily good color discrimination capability in the

blue color [4]. The inverse matrix transformation is performed to convert YIQ

to nonlinear R0G0B0.

Introducing a cylindrical coordinate transformation, numerical values for

hue and saturation can be calculated as follows:

HY IQ = tan
�1(

Q

I

) (1.39)

SY IQ = (I2 +Q
2)

1

2 (1.40)

As described it, the YIQ model is developed from a perceptual point of view

and provides several advantages in image coding and communications ap-

plications by decoupling the luma (Y ) and chrominance components (I and

Q). Nevertheless, YIQ is a perceptually non-uniform color space and thus

not appropriate for perceptual color di�erence quanti�cation. For example,
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the Euclidean distance is not capable of accurately measuring the perceptual

color distance in the perceptually non-uniform YIQ color space. Therefore,

YIQ is not the best color space for quantitative computations involving hu-

man color perception.

1.8 The HSI Family of Color Models

In image processing systems, it is often convenient to specify colors in a way

that is compatible with the hardware used. The di�erent variants of the RGB

monitor model address that need. Although these systems are computation-

ally practical, they are not useful for user speci�cation and recognition of

colors. The user cannot easily specify a desired color in the RGB model. On

the other hand, perceptual features, such as perceived luminance (intensity),

saturation and hue correlate well with the human perception of color . There-

fore, a color model in which these color attributes form the basis of the space

is preferable from the users point of view. Models based on lightness, hue

and saturation are considered to be better suited for human interaction. The

analysis of the user-oriented color spaces starts by introducing the family of

intensity, hue and saturation (HSI) models [28], [29]. This family of models

is used primarily in computer graphics to specify colors using the artistic no-

tion of tints, shades and tones. However, all the HSI models are derived from

the RGB color space by coordinate transformations. In a computer centered

image processing system, it is necessary to transform the color coordinates

to RGB for display and vice versa for color manipulation within the selected

space.

The HSI family of color models use approximately cylindrical coordinates.

The saturation (S) is proportional to radial distance, and the hue (H) is

a function of the angle in the polar coordinate system. The intensity (I)

or lightness (L) is the distance along the axis perpendicular to the polar

coordinate plane. The dominant factor in selecting a particular HSI model

is the de�nition of the lightness, which determines the constant-lightness

surfaces, and thus, the shape of the color solid that represents the model.

In the cylindrical models, the set of color pixels in the RGB cube which are

assigned a common lightness value (L) form a constant-lightness surface. Any

line parallel to the main diagonal of the color RGB cube meets the constant-

lightness surface at most in one point.

The HSI color space was developed to specify, numerically, the values of

hue, saturation, and intensity of a color [4]. The HSI color model is depicted

in Figure 1.10. The hue (H) is measured by the angle around the vertical axis

and has a range of values between 0 and 360 degrees beginning with red at 0Æ.

It gives a measure of the spectral composition of a color. The saturation (S)

is a ratio that ranges from 0 (i.e. on the I axis), extending radially outwards

to a maximum value of 1 on the surface of the cone. This component refers to

the proportion of pure light of the dominant wavelength and indicates how
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far a color is from a gray of equal brightness. The intensity (I) also ranges

between 0 and 1 and is a measure of the relative brightness. At the top and

bottom of the cone, where I = 0 and 1 respectively, H and S are unde�ned

and meaningless. At any point along the I axis the Saturation component is

zero and the hue is unde�ned. This singularity occurs whenever R = G = B.

gray-scale

purely
saturated

H

S
Green

Blue

RedYellow

Cyan

Magenta

White I=1

Black I=0

Intensity

P

Fig. 1.10. The HSI
Color Space

The HSI color model owes its usefulness to two principal facts [1], [28].

First, like in the YIQ model, the intensity component I is decoupled from the

chrominance information represented as hue H and saturation S. Second, the

hue (H) and saturation (S) components are intimately related to the way in

which humans perceive chrominance [1]. Hence, these features make the HSI

an ideal color model for image processing applications where the chrominance

is of importance rather than the overall color perception (which is determined

by both luminance and chrominance). One example of the usefulness of the
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HSI model is in the design of imaging systems that automatically determine

the ripeness of fruits and vegetables [1]. Another application is color image

histogram equalization performed in the HSI space to avoid undesirable shifts

in image hue [10].

The simplest way to choose constant-lightness surfaces is to de�ne them

as planes. A simpli�ed de�nition of the perceived lightness in terms of the

R,G,B values is L = R
0+G0+B0

3
, where the normalization is used to control

the range of lightness values. The di�erent constant-lightness surfaces are

perpendicular to the main diagonal of the RGB cube and parallel to each

other. The shape of a constant lightness surface is a triangle for 0�L�M

3

and 2M
3
�L�M with L2[0;M ] and where M is a given lightness threshold.

The theory underlying the derivation of conversion formulas between the

RGB space and HSI space is described in detail in [1], [28]. The image pro-

cessing literature on HSI does not clearly indicate whether the linear or the

non-linear RGB is used in these conversions [4]. Thus the non-linear (R0G0B0),

which is implicit in traditional image processing, shall be used. But this am-

biguity must be noted.

The conversion from R0G0B0 (range [0, 1]) to HSI (range [0, 1]) is highly

nonlinear and considerably complicated:

H = cos�1

"
1
2
[(R0 � G

0) + (R0 � B
0)]

[(R0 � G
0)2 + (R0 � B

0)(G0 � B
0)]

1

2

#
(1.41)

S = 1 �
3

(R0 + G
0 + B

0)
[min(R0

; G
0

; B
0)] (1.42)

I =
1

3
(R0 + G

0 + B
0) (1.43)

where H = 360Æ � H , if (B0
=I) > (G0

=I). Hue is normalized to the range

[0, 1] by letting H = H=360Æ. Hue (H) is not de�ned when the saturation

(S) is zero. Similarly, saturation (S) is unde�ned if intensity (I) is zero.

To transform the HSI values (range [0, 1]) back to the R0G0B0 values

(range [0, 1]), then the H values in [0, 1] range must �rst be converted back

to the un-normalized [0o, 360o] range by letting H = 360Æ(H). For the R0
G
0

(red and green) sector (0Æ < H � 120Æ), the conversion is:

B
0 = I (1 � S) (1.44)

R
0 = I

�
1 +

S cosH

cos (60Æ � H)

�
(1.45)

G
0 = 3I � (R0 + B

0) (1.46)

The conversion for the G0
B
0 (green and blue) sector (120Æ < H � 240Æ)

is given by:

H = H � 120Æ (1.47)
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R
0 = I (1 � S) (1.48)

G
0 = I

�
1 +

S cosH

cos (60Æ � H)

�
(1.49)

B
0 = 3I � (R0 + G

0) (1.50)

Finally, for the B
0
R
0 (blue and red) sector (240Æ < H � 360Æ), the

corresponding equations are:

H = H � 240Æ (1.51)

G
0 = I (1 � S) (1.52)

B
0 = I

�
1 +

S cosH

cos (60Æ � H)

�
(1.53)

R
0 = 3I � (G0 + B

0) (1.54)

Fast versions of the transformation, containing fewer multiplications and

avoiding square roots, are often used in hue calculations. Also, formulas with-

out trigonometric functions can be used. For example, hue can be evaluated

using the following formula [44]:

1. If B0 = min(R0
; G

0
; B

0) then

H =
G
0 �B

0

3(R0 +G
0 � 2B0

(1.55)

2. If R0 = min(R0
; G

0
; B

0) then

H =
B
0 �R

0

R
0 +G

0 � 2B0

+
1

3
(1.56)

3. If G0 = min(R0
; G

0
; B

0) then

H =
B
0 �R

0

R
0 +G

0 � 2B0

+
2

3
(1.57)

Although the HSI model is useful in some image processing applications,

the formulation of it is 
awed with respect to the properties of color vi-

sion. The usual formulation makes no clear reference to the linearity or non-

linearity of the underlying RGB and to the lightness perception of human

vision [4]. It computes the brightness as (R0 + G
0 + B

0) =3 and assigns

the name intensity I . Recall that the brightness perception is related to lumi-

nance Y . Thus, this computation con
icts with the properties of color vision

[4].

In addition to this, there is a discontinuity in the hue at 360o and thus,

the formulation introduces visible discontinuities in the color space. Another

major disadvantage of the HSI space is that it is not perceptually uniform.
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Consequently, the HSI model is not very useful for perceptual image compu-

tation and for conveyance of accurate color information. As such, distance

measures, such as the Euclidean distance, cannot estimate adequately the

perceptual color distance in this space.

The model discussed above is not the only member of the family. In par-

ticular, the double hexcone HLS model can be de�ned by simply modifying

the constant-lightness surface. It is depicted in Figure 1.11. In the HLS model

the lightness is de�ned as:

L =
max (R0

; G
0
; B

0) + min (R0
; G

0
; B

0)

2
(1.58)

If the maximum and the minimum value coincide then S = 0 and the hue

is unde�ned. Otherwise based on the lightness value, saturation is de�ned as

follows:

1. If L�0:5 then S =
(Max�Min)

(Max+Min)

2. If L > 0:5 then S =
(Max�Min)

(2�Max�Min)

where Max = max (R0
; G

0
; B

0) and Min = min (R0
; G

0
; B

0) respectively.

Similarly, hue is calculated according to:

1. If R0 =Max then

H =
G
0 �B

0

Max�Min

(1.59)

2. If G0 =Max then

H =
B
0 �R

0

Max�Min

(1.60)

3. If B0 =Max then

H = 4 +
R
0 �G

0

Max�Min

(1.61)

The backward transform starts by rescaling the hue angles into the range

[0; 6]. Then, the following cases are considered:

1. If S = 0, hue is unde�ned and (R0
; G

0
; B

0) = (L;L; L)

2. Otherwise, i = F loor(H) (the F loor(X) function returns the largest

integer which is not greater than X), in which i is the sector number of

the hue and f = H� i is the hue value in each sector. The following cases

are considered:

� if L�Lcritical =
255
2

then

Max = L(1 + S) (1.62)

Mid1 = L(2fS + 1� S) (1.63)
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Mid2 = L(2(1� f)S + 1� S) (1.64)

Min = L(1� S) (1.65)

� if L > Lcritical =
255
2

then

Max = L(1� S) + 255S (1.66)

Mid1 = 2((1� f)S � (0:5� f)Max) (1.67)

Mid2 = 2(fL� (f � 0:5)Max) (1.68)

Min = L(1 + S)� 255S (1.69)

Based on these intermediate values the following assignments should be

made:

1. if i = 0 then (R0
; G

0
; B

0) = (Max;Mid1;Min)

2. if i = 1 then (R0
; G

0
; B

0) = (Mid2;Max;Min)

3. if i = 2 then (R0
; G

0
; B

0) = (Min;Max;Mid1)

4. if i = 3 then (R0
; G

0
; B

0) = (Min;Mid2;Max)

5. if i = 4 then (R0
; G

0
; B

0) = (Mid1;Min;Max)

6. if i = 5 then (R0
; G

0
; B

0) = (Max;Min;Mid2)

The HSV (hue, saturation, value) color model also belongs to this group

of hue-oriented color coordinate systems which correspond more closely to

the human perception of color. This user-oriented color space is based on the

intuitive appeal of the artist's tint, shade, and tone. The HSV coordinate

system, proposed originally in Smith [36], is cylindrical and is conveniently

represented by the hexcone model shown in Figure 1.12 [23], [27]. The set

of equations below can be used to transform a point in the RGB coordinate

system to the appropriate value in the HSV space.

H1 = cos�1f
1
2
[(R �G) + (R�B)]p

(R�G)2 + (R �B)(G�B)
g (1.70)

H = H1 ; if B � G (1.71)

H = 360Æ �H1 ; if B > G (1.72)

S =
max(R;G;B)�min(R;G;B)

max(R;G;B)
(1.73)

V =
max(R;G;B)

255
(1.74)

Here the RGB values are between 0 and 255. A fast algorithm used here to

convert the set of RGB values to the HSV color space is provided in [23].

The important advantages of the HSI family of color spaces over other

color spaces are:
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� Good compatibility with human intuition.

� Separability of chromatic values from achromatic values.

� The possibility of using one color feature, hue, only for segmentation pur-

poses. Many image segmentation approaches take advantage of this. Seg-

mentation is usually performed in one color feature (hue) instead of three,

allowing the use of much faster algorithms.

However, hue-oriented color spaces have some signi�cant drawbacks, such

as:

� singularities in the transform, e.g. unde�ned hue for achromatic points

� sensitivity to small deviations of RGB values near singular points

� numerical instability when operating on hue due to the angular nature of

the feature.

1.9 Perceptually Uniform Color Spaces

Visual sensitivity to small di�erences among colors is of paramount impor-

tance in color perception and speci�cation experiments. A color system that

is to be used for color speci�cation should be able to represent any color with

high precision. All systems currently available for such tasks are based on

the CIE XYZ color model. In image processing, it is of particular interest

in a perceptually uniform color space where a small perturbation in a com-

ponent value is approximately equally perceptible across the range of that

value. The color speci�cation systems discussed until now, such as the XYZ

or RGB tristimulus values and the various RGB hardware oriented systems

are far from uniform. Recalling the discussion of YIQ space earlier in this

chapter, the ideal way to compute the perceptual components representative

of luminance and chrominance is to appropriately form the matrix of lin-

ear RGB components and then subject them to nonlinear transfer functions

based on the color sensing properties of the human visual system. A similar

procedure is used by CIE to formulate the L�u�v� and L�a�b� spaces. The

linear RGB components are �rst transformed to CIE XYZ components using

the appropriate matrix.

Finding a transformation of XYZ which transforms this color space into

a reasonably perceptually uniform color space consumed a decade or more at

the CIE and in the end, no single system could be agreed upon [4], [5]. Finally,

in 1976, CIE standardized two spaces, L�u�v� and L�a�b�, as perceptually

uniform. They are slightly di�erent because of the di�erent approaches to

their formulation [4], [5], [25], [30]. Nevertheless, both spaces are equally good

in perceptual uniformity and provide very good estimates of color di�erence

(distance) between two color vectors.

Both systems are based on the perceived lightness L� and a set of op-

ponent color axes, approximately red-green versus yellow-blue. According to
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the CIE 1976 standard, the perceived lightness of a standard observer is as-

sumed to follow the physical luminance (a quantity proportional to intensity)

according to a cubic root law. Therefore, the lightness L� is de�ned by the

CIE as:

L
� =

(
116( Y

Yn
)
1

3
� 16 if Y

Yn
> 0:008856

903:3( Y
Yn
)
1

3 if Y

Yn
�0:008856

(1.75)

where Yn is the physical luminance of the white reference point . The range

of values for L� is from 0 to 100 representing a black and a reference white

respectively. A di�erence of unity between two L� values, the so-called �L�

is the threshold of discrimination.

This standard function relates perceived lightness to linear light lumi-

nance. Luminance can be computed as a weighted sum of red, green and

blue components. If three sources appear red, green and blue and have the

same power in the visible spectrum, the green will appear the brightest of the

three because the luminous eÆciency function peaks in the green region of

the spectrum. Thus, the coeÆcients that correspond to contemporary CRT

displays (ITU-R BT. 709 recommendation) [24] re
ect that fact, when using

the following equation for the calculation of the luminance:

Y709 = 0:2125R+ 0:7154G+ 0:0721B (1.76)

The u� and v
� components in L�u�v� space and the the a� and b

� compo-

nents in L�a�b� space are representative of chrominance. In addition, both

are device independent color spaces. Both these color spaces are, however,

computationally intensive to transform to and from the linear as well as non-

linear RGB spaces. This is a disadvantage if real-time processing is required

or if computational resources are at a premium.

1.9.1 The CIE L�u�v� Color Space

The �rst uniform color space standardized by CIE is the L�u�v� illustrated

in Figure 1.13. It is derived based on the CIE XYZ space and white ref-

erence point [4], [5]. The white reference point [Xn; Yn; Zn] is the linear

RGB = [1; 1; 1] values converted to the XYZ values using the following

transformation:2
4Xn

Yn

Zn

3
5 =

2
4 0:4125 0:3576 0:18040:2127 0:7152 0:0722

0:0193 0:1192 0:9502

3
5
2
4 11
1

3
5 (1.77)

Alternatively, white reference points can be de�ned based on the Federal

Communications Commission (FCC) or the European Broadcasting Union

(EBU) RGB values using the following transformations respectively [35]:
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2
4Xn

Yn

Zn

3
5 =

2
4 0:607 0:174 0:2000:299 0:587 0:114

0:000 0:066 1:116

3
5
2
4 11
1

3
5 (1.78)

2
4Xn

Yn

Zn

3
5 =

2
4 0:430 0:342 0:1780:222 0:702 0:071

0:020 0:130 0:939

3
5
2
4 11
1

3
5 (1.79)

Fig. 1.13. The L�u�v�

Color Space

The lightness component L� is de�ned by the CIE as a modi�ed cube

root of luminance Y [4], [31], [37], [32]:

L
� =

8<
: 116

�
Y

Yn

� 1

3

� 16 if Y

Yn
> 0:008856

903:3
�
Y

Yn

�
Eotherwise

(1.80)

The CIE de�nition of L� applies a linear segment near black for (Y=Yn) �

0:008856. This linear segment is unimportant for practical purposes [4]. L�

has a range [0, 100], and a L� of unity is roughly the threshold of visibility

[4].

Computation of u� and v� involves intermediate u0, v0, u0n, and v
0

n quan-

tities de�ned as:

u
0 =

4X

X + 15Y + 3Z
v
0 =

9Y

X + 15Y + 3Z
(1.81)

u
0

n
=

4Xn

Xn + 15Yn + 3Zn
v
0

n
=

9Yn

Xn + 15Yn + 3Zn
(1.82)

with the CIE XYZ values computed through (1.20) and (1.21).

Finally, u� and v� are computed as:

u
� = 13L�(u0 � u

0

n
) (1.83)

v
� = 13L�(v0 � v

0

n) (1.84)

Conversion from L�u�v� to XYZ is accomplished by ignoring the linear seg-

ment of L�. In particular, the linear segment can be ignored if the luminance

variable Y is represented with eight bits of precision or less.
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Then, the luminance Y is given by:

Y =

�
L
� + 16

116

�3
Yn (1.85)

To compute X and Z, �rst compute u0 and v0 as:

u
0 =

u
�

13L�

+ u
0

n v
0 =

v
�

13L�

+ v
0

n (1.86)

Finally, X and Z are given by:

X =
1

4

�
u
0(9:0 � 15:0 v0) Y

v
0

+ 15:0 u0 Y

�
(1.87)

Z =
1

3

�
(9:0 � 15:0 v0) Y

v
0

� X

�
(1.88)

Consider two color vectors xL�u�v� and yL�u�v� in the L�u�v� space repre-

sented as:

xL�u�v� = [xL� ; xu� ; xv� ]
T and yL�u�v� = [yL� ; yu� ; yv� ]

T (1.89)

The perceptual color distance in the L�u�v� space, called the total color

di�erence�E�

uv in [5], is de�ned as the Euclidean distance (L2 norm) between

the two color vectors xL�u�v� and yL�u�v� :

�E
�

uv
= jjxL�u�v� � yL�u�v� jjL2

�E
�

uv
=
h
(xL� � yL�)

2
+ (xu� � yu�)

2
+ (xv� � yv�)

2
i 1
2

(1.90)

It should be mentioned that in a perceptually uniform space, the Euclidean

distance is an accurate measure of the perceptual color di�erence [5]. As such,

the color di�erence formula �E�

uv is widely used for the evaluation of color

reproduction quality in an image processing system, such as color coding

systems.

1.9.2 The CIE L�a�b� Color Space

The L�a�b� color space is the second uniform color space standardized by

CIE. It is also derived based on the CIE XYZ space and white reference

point [5], [37].

The lightness L� component is the same as in the L�u�v� space. The L�,

a
� and b

� components are given by:

L
� = 116

�
Y

Yn

� 1

3

� 16 (1.91)

a
� = 500

"�
X

Xn

� 1

3

�

�
Y

Yn

� 1

3

#
(1.92)
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b
� = 200

"�
Y

Yn

� 1

3

�

�
Z

Zn

� 1

3

#
(1.93)

with the constraint that X

Xn

;
Y

Yn
;

Z

Zn
> 0:01. This constraint will be satis�ed

for most practical purposes [4]. Hence, the modi�ed formulae described in [5]

for cases that do not not satisfy this constraint can be ignored in practice [4],

[10].

The back conversion to the XYZ space from the L�a�b� space is done

by �rst computing the luminance Y , as described in the back conversion of

L�u�v�, followed by the computation of X and Z:

Y =

�
L
� + 16

116

�3
Yn (1.94)

X =

 
a
�

500
+

�
Y

Yn

� 1

3

!3

Xn (1.95)

Z =

 
�

b
�

200
+

�
Y

Yn

� 1

3

!3

Zn (1.96)

The perceptual color distance in the L�a�b� is similar to the one in the

L�u�v�. The two color vectors xL�a�b� and yL�a�b� in the L�a�b� space can

be represented as:

xL�a�b� = [xL� ; xa� ; xb� ]
T and yL�a�b� = [yL� ; ya� ; yb� ]

T (1.97)

The perceptual color distance (or total color di�erence) in the L�a�b� space,

�E
�

ab
, between two color vectors xL�u�v� and yL�u�v� is given by the Eu-

clidean distance (L2 norm):

�E
�

ab = jjxL�a�b� � yL�a�b� jjL2

=
h
(xL� � yL�)

2
+ (xa� � ya�)

2
+ (xb� � yb�)

2
i 1
2

(1.98)

The color di�erence formula �E�

ab
is applicable to the observing conditions

normally found in practice, as in the case of �E�

uv
. However, this simple

di�erence formula values color di�erences too strongly when compared to

experimental results. To correct the problem a new di�erence formula was

recommended in 1994 by CIE [25], [31]. The new formula is as follows:

�E
�

ab94
= [

(xL� � yL�)
2

KLSL

+
(xa� � ya�)

2

KcSc

+
(xb� � yb�)

2

KHSH

]

1

2

(1.99)

where the factors KL, Kc, KH are factors to match the perception of the

background conditions, and SL, Sc, SH are linear functions of the di�erences

in chroma. Standard reference values for the calculation for �E�

ab94
have been
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speci�ed by the CIE. Namely, the values most often in use are KL = Kc =

KH = 1, SL = 1, Sc = 1+ 0:045((xa� � ya�) and SH = 1+ 0:015((xb� � yb�)

respectively. The parametric values may be modi�ed to correspond to typical

experimental conditions. As an example, for the textile industry, the KL

factor should be 2, and the Kc and KH factors should be 1. For all other

applications a value of 1 is recommended for all parametric factors [38].

1.9.3 Cylindrical L�u�v� and L�a�b� Color Space

Any color expressed in the rectangular coordinate system of axes L�u�v� or

L�a�b� can also be expressed in terms of cylindrical coordinates with the

perceived lightness L� and the psychometric correlates of chroma and hue

[37]. The chroma in the L�u�v� space is denoted as C�

uv
and that in the

L�a�b� space C�

ab
. They are de�ned as [5]:

C
�

uv =
�
(u�)2 + (v�)2

� 1
2 (1.100)

C
�

ab
=
�
(a�)2 + (b�)2

� 1
2 (1.101)

The hue angles are useful quantities in specifying hue numerically [5], [37].

Hue angle huv in the L�u�v� space and hab in the L�a�b� space are de�ned

as [5]:

huv = arctan

�
v
�

u
�

�
(1.102)

hab = arctan

�
b
�

a
�

�
(1.103)

The saturation s�
uv

in the L�u�v� space is given by:

s
�

uv =
C
�

uv

L
�

(1.104)

1.9.4 Applications of L�u�v� and L�a�b� spaces

The L�u�v� and L�a�b� spaces are very useful in applications where precise

quanti�cation of perceptual distance between two colors is necessary [5]. For

example in the realization of perceptual based vector order statistics �lters.

If a degraded color image has to be �ltered so that it closely resembles, in

perception, the un-degraded original image, then a good criterion to opti-

mize is the perceptual error between the output image and the un-degraded

original image. Also, they are very useful for evaluation of perceptual close-

ness or perceptual error between two color images [4]. Precise evaluation of

perceptual closeness between two colors is also essential in color matching sys-

tems used in various applications such as multimedia products, image arts,

entertainment, and advertisements [6], [14], [22].
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L�u�v� and L�a�b� color spaces are extremely useful in imaging sys-

tems where exact perceptual reproduction of color images (color consistency)

across the entire system is of primary concern rather than real-time or simple

computing. Applications include advertising, graphic arts, digitized or ani-

mated paintings etc. Suppose, an imaging system consists of various color de-

vices, for example video camera/digital scanner, display device, and printer.

A painting has to be digitized, displayed, and printed. The displayed and

printed versions of the painting must appear as close as possible to the origi-

nal image. L�u�v� and L�a�b� color spaces are the best to work with in such

cases. Both these systems have been successfully applied to image coding for

printing [4], [16].

Color calibration is another important process related to color consistency.

It basically equalizes an image to be viewed under di�erent illumination or

viewing conditions. For instance, an image of a target object can only be taken

under a speci�c lighting condition in a laboratory. But the appearance of this

target object under normal viewing conditions, say in ambient light, has to

be known. Suppose, there is a sample object whose image under ambient

light is available. Then the solution is to obtain the image of the sample

object under the same speci�c lighting condition in the laboratory. Then

a correction formula can be formulated based on the images of the sample

object obtained and these can be used to correct the target object for the

ambient light [14]. Perceptual based color spaces, such as L�a�b�, are very

useful for computations in such problems [31], [37]. An instance, where such

calibration techniques have great potential, is medical imaging in dentistry.

Perceptually uniform color spaces, with the Euclidean metric to quantify

color distances, are particularly useful in color image segmentation of natural

scenes using histogram-based or clustering techniques.

A method of detecting clusters by �tting to them some circular-cylindrical

decision elements in the L�a�b� uniform color coordinate system was pro-

posed in [39], [40]. The method estimates the clusters' color distributions

without imposing any constraints on their forms. Boundaries of the decision

elements are formed with constant lightness and constant chromaticity loci.

Each boundary is obtained using only 1-D histograms of the L�HÆC� cylin-

drical coordinates of the image data. The cylindrical coordinates L�HÆC� [30]

of the L�a�b� color space known as lightness, hue, and chroma, are given by:

L
� = L

� (1.105)

H
Æ = arctan(b�=a�) (1.106)

C
� = (a�2 + b

�2)1=2 (1.107)

The L�a�b� space is often used in color management systems (CMS). A color

management system handles the color calibration and color consistency is-

sues. It is a layer of software resident on a computer that negotiates color

reproduction between the application and color devices. Color management

systems perform the color transformations necessary to exchange accurate
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color between diverse devices [4], [43]. A uniform, based on CIE L�u�v�, color

space named TekHVC was proposed by Tektronix as part of its commercially

available CMS [45].

1.10 The Munsell Color Space

The Munsell color space represents the earliest attempt to organize color

perception into a color space [5], [14], [46]. The Munsell space is de�ned as

a comparative reference for artists. Its general shape is that of a cylindrical

representation with three dimensions roughly corresponding to the perceived

lightness, hue and saturation. However, contrary to the HSV or HSI color

models where the color solids were parameterized by hue, saturation and

perceived lightness, the Munsell space uses the method of the color atlas,

where the perception attributes are used for sampling.

The fundamental principle behind the Munsell color space is that of equal-

ity of visual spacing between each of the three attributes. Hue is scaled ac-

cording to some uniquely identi�able color. It is represented by a circular

band divided into ten sections. The sections are de�ned as red, yellow-red, yel-

low, green-yellow, green, blue-green, blue, purple-blue, purple and red-purple.

Each section can be further divided into ten subsections if �ner divisions of

hue are necessary. A chromatic hue is described according to its resemblance

to one or two adjacent hues. Value in the Munsell color space refers to a

color's lightness or darkness and is divided into eleven sections numbered

zero to ten. Value zero represents black while a value of ten represent white.

The chroma de�nes the color's strength. It is measured in numbered steps

starting at one with weak colors having low chroma values. The maximum

possible chroma depends on the hue and the value being used. As can be

seen in Fig. (1.14), the vertical axis of the Munsell color solid is the line of

V values ranging from black to white. Hue changes along each of the circles

perpendicular to the vertical axis. Finally, chroma starts at zero on the V

axis and changes along the radius of each circle.

The Munsell space is comprised of a set of 1200 color chips each assigned

a unique hue, value and chroma component. These chips are grouped in such

a way that they form a three dimensional solid, which resembles a warped

sphere [5]. There are di�erent editions of the basic Munsell book of colors,

with di�erent �nishes (glossy or matte), di�erent sample sizes and a di�erent

number of samples. The glossy �nish collection displays color point chips

arranged on 40 constant-hue charts. On each constant-hue chart the chips

are arranged in rows and columns. In this edition the colors progress from

light at the top of each chart to very dark at the bottom by steps which

are intended to be perceptually equal. They also progress from achromatic

colors, such as white and gray at the inside edge of the chart, to chromatic

colors at the outside edge of the chart by steps that are also intended to be
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perceptually equal. All the charts together make up the color atlas, which is

the color solid of the Munsell system.

Value

Chroma

Hue

R

GY

G

BG

B

PB P

RP

Y

YR

Fig. 1.14. The Munsell
color system

Although the Munsell book of colors can be used to de�ne or name colors,

in practice is not used directly for image processing applications. Usually

stored image data, most often in RGB format, are converted to the Munsell

coordinates using either lookup tables or closed formulas prior to the actual

application. The conversion from the RGB components to the Munsell hue

(H), value (V ) corresponding to luminance and chroma (C) corresponding to

saturation, can be achieved by using the following mathematical algorithm

[47]:

x = 0:620R+ 0:178G+ 0:204B

y = 0:299R+ 0:587G+ 0:144B

z = 0:056G+ 0:942B (1.108)

A nonlinear transformation is applied to the intermediate values as follows:

p = f(x)� f(y) (1.109)

q = 0:4(f(z)� f(y)) (1.110)

where f(r) = 11:6r
1

3 � 1:6. Further the new variables are transformed to:

s = (a+ bcos(�))p (1.111)

t = (c+ dsin(�))q (1.112)

where � = tan
�1(p

q
), a = 8:880, b = 0:966, c = 8:025 and d = 2:558. Finally,

the requested values are obtained as:

H = arctan(
s

t

) (1.113)
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V = f(y) (1.114)

and

C = (s2 + t
2)

1

2 (1.115)

Alternatively, conversion from RGB, or other color spaces, to the Munsell

color space can be achieved through look-up tables and published charts [5].

In summary, the Munsell color system is an attempt to de�ne color in

terms of hue, chroma and lightness parameters based on subjective observa-

tions rather than direct measurements or controlled perceptual experiments.

Although it has been found that the Munsell space is not as perceptually

uniform as originally claimed and, despite the fact that it cannot directly

integrate with additive color schemes, it is still in use today despite attempts

to introduce colorimetric models for its replacement.

1.11 The Opponent Color Space

The opponent color space family is a set of physiologically motivated color

spaces inspired by the physiology of the human visual system. According

to the theory of color vision discussed in [48] the human vision system can

be expressed in terms of opponent hues, yellow and blue on one hand and

green and red on the other, which cancel each other when superimposed.

In [49] an experimental procedure was developed which allowed researchers

to quantitatively express the amounts of each of the basic hues present in

any spectral stimulus. The color model of [50], [51], [52], [44] suggests the

transformation of the RGB `cone' signals to three channels, one achromatic

channel (I) and two opponent color channels (RG, YB) according to:

RG = R�G (1.116)

Y B = 2B � R�G (1.117)

I = R+G+B (1.118)

At the same time a set of e�ective color features was derived by system-

atic experiments of region segmentation [53]. According to the segmentation

procedure of [53] the color which has the deep valleys on its histogram and

has the largest discriminant power to separate the color clusters in a given

region need not be the R, G, and B color features. Since a feature is said

to have large discriminant power if its variance is large, color features with

large discriminant power were derived by utilizing the Karhunen-Loeve (KL)

transformation. At every step of segmenting a region, calculation of the new

color features is done for the pixels in that region by the KL transform of

R, G, and B signals. Based on extensive experiments [53], it was concluded
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Cones Opponent Signals

R+G+B

R-G

2B-R-GB

G

R

Fig. 1.15. The Opponent color stage of the human visual system

that three color features constitute an e�ective set of features for segmenting

color images, [54], [55]:

I1 =
(R+G+B)

3
(1.119)

I2 = (R�B) (1.120)

I3 =
(2G�R�B)

2
(1.121)

In the opponent color space hue could be coded in a circular format ranging

through blue, green, yellow, red and black to white. Saturation is de�ned as

distance from the hue circle making hue and saturation speciable with in color

categories. Therefore, although opponent representation are often thought as

a linear transforms of RGB space, the opponent representation is much more

suitable for modeling perceived color than RGB is [14].

1.12 New Trends

The plethora of color models available poses application diÆculties. Since

most of them are designed to perform well in a speci�c application, their per-

formance deteriorates rapidly under di�erent operating conditions. Therefore,

there is a need to merge the di�erent (mainly device dependent) color spaces

into a single standard space. The di�erences between the monitor RGB space

and device independent spaces, such as the HVS and the CIE L�a�b� spaces

impose problems in applications, such as multimedia database navigation and

face recognition primarily due to the complexity of the operations needed to

support the transform from/to device dependent color spaces.

To overcome such problems and to serve the needs of network-centric ap-

plications and WWW-based color imaging systems, a new standardized color

space based on a colorimetric RGB (sRGB) space has recently been proposed

[56]. The aim of the new color space is to complement the current color space



43

management strategies by providing a simple, yet eÆcient and cost e�ective

method of handling color in the operating systems, device drivers and the

Web using a simple and robust device independent color de�nition.

Since most computer monitors are similar in their key color characteristics

and the RGB space is the most suitable color space for the devices forming a

modern computer-based imaging systems, the colorimetric RGB space seems

to be the best candidate for such a standardized color space.

In de�ning a colorimetric color space, two factors are of paramount im-

portance:

� the viewing environment parameters with its dependencies on the Human

Visual System

� the standard device space colorimetric de�nitions and transformations [56]

The viewing environment descriptions contain all the necessary transforms

needed to support conversions between standard and target viewing environ-

ments. On the other hand, the colorimetric de�nitions provide the transforms

necessary to convert between the new sRGB and the CIE-XYZ color space.

The reference viewing environment parameters can be found in [56] with

the sRGB tristimulus values calculated from the CIE-XYZ values according

to the following transform:2
4RsRGB

GsRGB

BsRGB

3
5 =

2
4 3:2410 �1:5374 �0:4986

�0:9692 1:8760 0:0416

0:0556 �0:2040 1:0570

3
5
2
4X
Y

Z

3
5 (1.122)

In practical image processing systems negative sRGB tristimulus values and

sRGB values greater than 1 are not retained and typically removed by utiliz-

ing some form of clipping. In the sequence, the linear tristimulus values are

transformed to nonlinear sR0G0B0 as follows:

1. If RsRGB ; GsRGB ; BsRGB�0:0034 then

sR
0 = 12:92RsRGB (1.123)

sG
0 = 12:92GsRGB (1.124)

sB
0 = 12:92BsRGB (1.125)

2. else if RsRGB ; GsRGB ; BsRGB > 0:0034 then

sR
0 = 1:055RsRGB

1:0

2:4 � 0:055 (1.126)

sG
0 = 1:055GsRGB

1:0

2:4 � 0:055 (1.127)

sB
0 = 1:055BsRGB

1:0

2:4 � 0:055 (1.128)
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The e�ect of the above transformation is to closely �t a straightforward 


value of 2.2 with a slight o�set to allow for invertibility in integer mathemat-

ics. The nonlinear R0G0B0 values are then converted to digital values with a

black digital count of 0 and a white digital count of 255 for 24-bit coding as

follows:

sRd = 255:0sR0 (1.129)

sGd = 255:0sG0 (1.130)

sBd = 255:0sB0 (1.131)

The backwards transform is de�ned as follows:

sR
0 = sRd + 255:0 (1.132)

sG
0 = sGd + 255:0 (1.133)

sB
0 = sBd + 255:0 (1.134)

and

1. if RsRGB ; GsRGB ; BsRGB�0:03928 then

RsRGB = sR
0 + 12:92 (1.135)

GsRGB = sG
0 + 12:92 (1.136)

BsRGB = sB
0 + 12:92 (1.137)

2. else if RsRGB ; GsRGB ; BsRGB > 0:03928 then

RsRGB = (
sR

0 + 0:055

1:055
)

2:4

(1.138)

GsRGB = (
sG

0 + 0:055

1:055
)

2:4

(1.139)

BsRGB = (
sB

0 + 0:055

1:055
)

2:4

(1.140)

with 2
4X
Y

Z

3
5 =

2
40:4124 0:3576 0:18050:2126 0:7152 0:0722

0:0193 0:1192 0:9505

3
5
2
4RsRGB

GsRGB

BsRGB

3
5 (1.141)

The addition of a new standardized color space which supports Web-

based imaging systems, device drivers, printers and monitors complementing

the existing color management support can bene�t producers and users alike

by presenting a clear path towards an improved color management system.
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1.13 Color Images

Color imaging systems are used to capture and reproduce the scenes that

humans see. Imaging systems can be built using a variety of optical, electronic

or chemical components. However, all of them perform three basic operations,

namely: (i) image capture, (ii) signal processing, and (iii) image formation.

Color-imaging devices exploit the trichromatic theory of color to regulate how

much light from the three primary colors is absorbed or re
ected to produce

a desired color.

There are a number of ways to acquiring and reproducing color images,

including but not limited to:

� Photographic �lm. The �lm which is used by conventional cameras con-

tains three emulation layers, which are sensitive to red and blue light, which

enters through the camera lens.

� Digital cameras. Digital cameras use a CCD to capture image informa-

tion. Color information is captured by placing red, green and blue �lters

before the CCD and storing the response to each channel.

� Cathode-Ray tubes. CRTs are the display device used in televisions

and computer monitors. They utilize a extremely �ne array of phosphors

that emit red, green and blue light at intensities governed by an electron

gun, in accordance to an image signal. Due to the close proximity of the

phosphors and the spatial �ltering characteristics of the human eye, the

emitted primary colors are mixed together producing an overall color.

� Image scanners. The most common method of scanning color images is

the utilization of three CCD's each with a �lter to capture red, green and

blue light re
ectance. These three images are then merged to create a copy

of the scanned image.

� Color printers. Color printers are the most common method of attaining

a printed copy of a captured color image. Although the trichromatic theory

is still implemented, color in this domain is subtractive. The primaries

which are used are usually cyan, magenta and yellow. The amount of the

three primaries which appear on the printed media govern how much light

is re
ected.

1.14 Summary

In this chapter the phenomenon of color was discussed. The basic color sensing

properties of the human visual system and the CIE standard color speci�-

cation system XYZ were described in detail. The existence of three types of

spectral absorption cones in the human eyes serves as the basis of the trichro-

matic theory of color, according to which all visible colors can be created by

combining three . Thus, any color can be uniquely represented by a three

dimensional vector in a color model de�ned by the three primary colors.
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Table 1.3. Color Model

Color System Transform (from RGB) Component correlation

RGB - highly correlated

R0G0B0 non linear

XYZ linear correlated

YIQ linear uncorrelated

YCC linear uncorrelated

I1I2I3 linear correlated

HSV non linear correlated

HSI non linear correlated

HLS non linear correlated

L�u�v� non linear correlated

L�a�b� non linear correlated

Munsell non linear correlated

Fig. 1.16. A taxonomy of color models

Color speci�cation models are of paramount importance in applications

where eÆcient manipulation and communication of images and video frames

are required. A number of color speci�cation models are in use today. Ex-

amples include color spaces, such as the RGB, R0G0B0, YIQ, HSI, HSV,

HLS,L�u�v�, and L�a�b�. The color model is a mathematical representation

of spectral colors in a �nite dimensional vector space. In each one of them the

actual color is reconstructed by combining the basis elements of the vector



References 47

Color Spaces

Models Applications

Colorimetric XYZ colorimetric calculations

Device-oriented - non-uniform spaces storage, processing, analysis

RGB, YIQ, YCC coding, color TV, storage (CD-ROM)

- uniform spaces color di�erence evaluation

L�a�b�, L�u�v� analysis, color management systems

User-oriented HSI, HSV, HLS, I1I2I3 human color perception

multimedia, computer graphics

Munsell human visual system

spaces, the so called primary colors. By de�ning di�erent primary colors for

the representation of the system di�erent color models can be devised. One

important aspect is the color transformation, the change of coordinates from

one color system to another (see Table 1.3). Such a transformation associates

to each color in one system a color in the other model. Each color model comes

into existence for a speci�c application in color image processing. Unfortu-

nately, there is no technique for determining the optimum coordinate model

for all image processing applications. For a speci�c application the choice of

a color model depends on the properties of the model and the design char-

acteristics of the application. Table 1.14 summarizes the most popular color

systems and some of their applications.
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