IBM SPSS Web Report - Output3.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - May 13, 2024

CORRELATIONS
  /VARIABLES=X1.1 X1.2 X1.3 TOTAL_X1 X2.1 X2.2 X2.3 TOTAL_X2 X3.1 X3.2 X3.3 TOTAL_X3 Y1 Y2 Y3 Y4
    TOTAL_Y
  /PRINT=TWOTAIL NOSIG
  /MISSING=PAIRWISE.

Correlations
Correlations - Correlations - May 13, 2024
CorrelationsCorrelations, table, 1 levels of column headers and 2 levels of row headers, table with 19 columns and 55 rows
  X1.1 X1.2 X1.3 TOTAL_X1 X2.1 X2.2 X2.3 TOTAL_X2 X3.1 X3.2 X3.3 TOTAL_X3 Y1 Y2 Y3 Y4 TOTAL_Y
X1.1 Pearson Correlation 1 .456** .523** .805** .384** .309** .319** .375** .129 .070 -.036 .063 .188 .503** .384** .287** .416**
Sig. (2-tailed)   .000 .000 .000 .000 .002 .001 .000 .200 .489 .719 .534 .061 .000 .000 .004 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X1.2 Pearson Correlation .456** 1 .481** .831** .285** .186 .173 .239* .291** .262** .219* .298** .488** .456** .439** .422** .561**
Sig. (2-tailed) .000   .000 .000 .004 .065 .085 .017 .003 .008 .028 .003 .000 .000 .000 .000 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X1.3 Pearson Correlation .523** .481** 1 .791** .470** .348** .338** .429** .196 .112 .109 .162 .317** .233* .265** .174 .311**
Sig. (2-tailed) .000 .000   .000 .000 .000 .001 .000 .051 .265 .281 .108 .001 .019 .008 .083 .002
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
TOTAL_X1 Pearson Correlation .805** .831** .791** 1 .456** .335** .330** .416** .260** .193 .128 .225* .420** .503** .458** .379** .545**
Sig. (2-tailed) .000 .000 .000   .000 .001 .001 .000 .009 .054 .203 .025 .000 .000 .000 .000 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X2.1 Pearson Correlation .384** .285** .470** .456** 1 .699** .656** .874** .436** .337** .244* .393** .274** .298** .259** .126 .299**
Sig. (2-tailed) .000 .004 .000 .000   .000 .000 .000 .000 .001 .015 .000 .006 .003 .009 .211 .003
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X2.2 Pearson Correlation .309** .186 .348** .335** .699** 1 .803** .922** .579** .401** .315** .501** .173 .164 .127 .049 .161
Sig. (2-tailed) .002 .065 .000 .001 .000   .000 .000 .000 .000 .001 .000 .085 .104 .208 .627 .110
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X2.3 Pearson Correlation .319** .173 .338** .330** .656** .803** 1 .908** .610** .402** .290** .504** .283** .280** .237* .089 .278**
Sig. (2-tailed) .001 .085 .001 .001 .000 .000   .000 .000 .000 .003 .000 .004 .005 .017 .377 .005
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
TOTAL_X2 Pearson Correlation .375** .239* .429** .416** .874** .922** .908** 1 .600** .421** .313** .516** .271** .276** .232* .099 .274**
Sig. (2-tailed) .000 .017 .000 .000 .000 .000 .000   .000 .000 .002 .000 .006 .005 .020 .329 .006
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X3.1 Pearson Correlation .129 .291** .196 .260** .436** .579** .610** .600** 1 .677** .447** .822** .395** .283** .355** .194 .386**
Sig. (2-tailed) .200 .003 .051 .009 .000 .000 .000 .000   .000 .000 .000 .000 .004 .000 .053 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X3.2 Pearson Correlation .070 .262** .112 .193 .337** .401** .402** .421** .677** 1 .736** .929** .509** .313** .343** .220* .437**
Sig. (2-tailed) .489 .008 .265 .054 .001 .000 .000 .000 .000   .000 .000 .000 .002 .000 .028 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
X3.3 Pearson Correlation -.036 .219* .109 .128 .244* .315** .290** .313** .447** .736** 1 .842** .493** .387** .362** .245* .466**
Sig. (2-tailed) .719 .028 .281 .203 .015 .001 .003 .002 .000 .000   .000 .000 .000 .000 .014 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
TOTAL_X3 Pearson Correlation .063 .298** .162 .225* .393** .501** .504** .516** .822** .929** .842** 1 .539** .380** .409** .255* .498**
Sig. (2-tailed) .534 .003 .108 .025 .000 .000 .000 .000 .000 .000 .000   .000 .000 .000 .011 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Y1 Pearson Correlation .188 .488** .317** .420** .274** .173 .283** .271** .395** .509** .493** .539** 1 .569** .517** .298** .756**
Sig. (2-tailed) .061 .000 .001 .000 .006 .085 .004 .006 .000 .000 .000 .000   .000 .000 .003 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Y2 Pearson Correlation .503** .456** .233* .503** .298** .164 .280** .276** .283** .313** .387** .380** .569** 1 .690** .509** .851**
Sig. (2-tailed) .000 .000 .019 .000 .003 .104 .005 .005 .004 .002 .000 .000 .000   .000 .000 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Y3 Pearson Correlation .384** .439** .265** .458** .259** .127 .237* .232* .355** .343** .362** .409** .517** .690** 1 .619** .876**
Sig. (2-tailed) .000 .000 .008 .000 .009 .208 .017 .020 .000 .000 .000 .000 .000 .000   .000 .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Y4 Pearson Correlation .287** .422** .174 .379** .126 .049 .089 .099 .194 .220* .245* .255* .298** .509** .619** 1 .741**
Sig. (2-tailed) .004 .000 .083 .000 .211 .627 .377 .329 .053 .028 .014 .011 .003 .000 .000   .000
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
TOTAL_Y Pearson Correlation .416** .561** .311** .545** .299** .161 .278** .274** .386** .437** .466** .498** .756** .851** .876** .741** 1
Sig. (2-tailed) .000 .000 .002 .000 .003 .110 .005 .006 .000 .000 .000 .000 .000 .000 .000 .000  
N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
**. Correlation is significant at the 0.01 level (2-tailed).  
*. Correlation is significant at the 0.05 level (2-tailed).  
Log
Log - Log - May 13, 2024

RELIABILITY
  /VARIABLES=X1.1 X1.2 X1.3 X2.1 X2.2 X2.3 X3.1 X3.2 X3.3 Y1 Y2 Y3 Y4
  /SCALE('ALL VARIABLES') ALL
  /MODEL=ALPHA
  /SUMMARY=TOTAL.

Scale: ALL VARIABLES
Scale: ALL VARIABLES - Case Processing Summary - May 13, 2024
Case Processing SummaryCase Processing Summary, table, 1 levels of column headers and 2 levels of row headers, table with 4 columns and 6 rows
  N %
Cases Valid 100 100.0
Excludeda 0 .0
Total 100 100.0
a. Listwise deletion based on all variables in the procedure.  
Scale: ALL VARIABLES
Scale: ALL VARIABLES - Reliability Statistics - May 13, 2024
Reliability StatisticsReliability Statistics, table, 1 levels of column headers and 0 levels of row headers, table with 2 columns and 3 rows
Cronbach's Alpha N of Items
.874 13
Scale: ALL VARIABLES
Scale: ALL VARIABLES - Item-Total Statistics - May 13, 2024
Item-Total StatisticsItem-Total Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 15 rows
  Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item-Total Correlation Cronbach's Alpha if Item Deleted
X1.1 52.93 37.581 .437 .870
X1.2 53.13 36.175 .526 .866
X1.3 53.01 37.970 .454 .870
X2.1 53.40 34.222 .586 .862
X2.2 53.35 34.876 .556 .864
X2.3 53.47 34.231 .603 .861
X3.1 53.31 34.337 .630 .860
X3.2 53.27 34.825 .605 .861
X3.3 53.27 35.391 .519 .866
Y1 53.37 34.195 .593 .862
Y2 53.20 35.111 .616 .861
Y3 53.25 34.553 .600 .861
Y4 53.20 36.687 .409 .872
Log
Log - Log - May 13, 2024

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SCATTERPLOT=(*SRESID ,*ZPRED)
  /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
  /SAVE RESID.

Regression
Regression - Descriptive Statistics - May 13, 2024
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 6 rows
  Mean Std. Deviation N
TOTAL_Y 17.70 2.603 100
TOTAL_X1 13.97 1.466 100
TOTAL_X2 12.82 2.341 100
TOTAL_X3 13.19 2.102 100
Regression
Regression - Correlations - May 13, 2024
CorrelationsCorrelations, table, 1 levels of column headers and 2 levels of row headers, table with 6 columns and 14 rows
  TOTAL_Y TOTAL_X1 TOTAL_X2 TOTAL_X3
Pearson Correlation TOTAL_Y 1.000 .545 .274 .498
TOTAL_X1 .545 1.000 .416 .225
TOTAL_X2 .274 .416 1.000 .516
TOTAL_X3 .498 .225 .516 1.000
Sig. (1-tailed) TOTAL_Y . .000 .003 .000
TOTAL_X1 .000 . .000 .012
TOTAL_X2 .003 .000 . .000
TOTAL_X3 .000 .012 .000 .
N TOTAL_Y 100 100 100 100
TOTAL_X1 100 100 100 100
TOTAL_X2 100 100 100 100
TOTAL_X3 100 100 100 100
Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson
1 .684a .468 .451 1.928 1.869
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 9 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -.238 2.032   -.117 .907    
TOTAL_X1 .915 .145 .516 6.298 .000 .827 1.210
TOTAL_X2 -.208 .104 -.187 -2.009 .047 .639 1.565
TOTAL_X3 .593 .108 .479 5.506 .000 .734 1.363
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Collinearity Diagnostics - May 13, 2024
Collinearity DiagnosticsaCollinearity Diagnostics, table, 2 levels of column headers and 2 levels of row headers, table with 8 columns and 8 rows
Model Dimension Eigenvalue Condition Index Variance Proportions
(Constant) TOTAL_X1 TOTAL_X2 TOTAL_X3
1 1 3.962 1.000 .00 .00 .00 .00
2 .019 14.509 .13 .09 .48 .09
3 .014 16.862 .00 .05 .41 .82
4 .005 28.327 .87 .85 .10 .09
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 15 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Standard Error of Predicted Value .208 .917 .359 .140 100
Adjusted Predicted Value 11.37 20.33 17.71 1.769 100
Residual -5.484 4.315 .000 1.899 100
Std. Residual -2.844 2.238 .000 .985 100
Stud. Residual -2.895 2.353 -.002 1.007 100
Deleted Residual -5.684 4.795 -.008 1.985 100
Stud. Deleted Residual -3.015 2.411 -.004 1.019 100
Mahal. Distance .167 21.399 2.970 3.867 100
Cook's Distance .000 .162 .012 .025 100
Centered Leverage Value .002 .216 .030 .039 100
a. Dependent Variable: TOTAL_Y
Charts
Charts - *zresid Histogram - May 13, 2024
Regression Standardized Residual: 5.140E-16
Frequency: 1 Regression Standardized Residual: 2.2324
Frequency: 1 Regression Standardized Residual: 2.2324
Frequency: 1 Regression Standardized Residual: 1.6930
Frequency: 1 Regression Standardized Residual: 1.6930
Frequency: 1 Regression Standardized Residual: 1.5675
Frequency: 1 Regression Standardized Residual: 1.5675
Frequency: 1 Regression Standardized Residual: 1.1877
Frequency: 1 Regression Standardized Residual: 1.1877
Frequency: 1 Regression Standardized Residual: 0.8259
Frequency: 1 Regression Standardized Residual: 0.8259
Frequency: 1 Regression Standardized Residual: 0.4336
Frequency: 1 Regression Standardized Residual: 0.4336
Frequency: 1 Regression Standardized Residual: 0.1634
Frequency: 1 Regression Standardized Residual: 0.1634
Frequency: 1 Regression Standardized Residual: -0.1893
Frequency: 1 Regression Standardized Residual: -0.1893
Frequency: 1 Regression Standardized Residual: -0.4440
Frequency: 1 Regression Standardized Residual: -0.4440
Frequency: 1 Regression Standardized Residual: -0.8071
Frequency: 1 Regression Standardized Residual: -0.8071
Frequency: 1 Regression Standardized Residual: -1.1602
Frequency: 1 Regression Standardized Residual: -1.1602
Frequency: 1 Regression Standardized Residual: -1.4802
Frequency: 1 Regression Standardized Residual: -1.4802
Frequency: 1 Regression Standardized Residual: -1.8886
Frequency: 1 Regression Standardized Residual: -1.8886
Frequency: 1 Regression Standardized Residual: -2.1633
Frequency: 1 Regression Standardized Residual: -2.1633
Frequency: 1 Regression Standardized Residual: -2.4890
Frequency: 1 Regression Standardized Residual: -2.4890
Frequency: 1 Regression Standardized Residual: -2.8440
Frequency: 1 Regression Standardized Residual: -2.8440
Frequency: 1 0 5 10 15 20 25 25 20 15 10 5 0 -3 -2 -1 0 1 2 3 3 2 1 0 -1 -2 -3

Charts
Charts - *zresid Normal P-P Plot - May 13, 2024
Observed Cum Prob: 0
Expected Cum Prob: 0 Observed Cum Prob: 0.9938
Expected Cum Prob: 0.9874 Observed Cum Prob: 0.9838
Expected Cum Prob: 0.9870 Observed Cum Prob: 0.9738
Expected Cum Prob: 0.9553 Observed Cum Prob: 0.9638
Expected Cum Prob: 0.9542 Observed Cum Prob: 0.9539
Expected Cum Prob: 0.9415 Observed Cum Prob: 0.9439
Expected Cum Prob: 0.9085 Observed Cum Prob: 0.9339
Expected Cum Prob: 0.9059 Observed Cum Prob: 0.9239
Expected Cum Prob: 0.8975 Observed Cum Prob: 0.9140
Expected Cum Prob: 0.8746 Observed Cum Prob: 0.9040
Expected Cum Prob: 0.8619 Observed Cum Prob: 0.8940
Expected Cum Prob: 0.8619 Observed Cum Prob: 0.8840
Expected Cum Prob: 0.8582 Observed Cum Prob: 0.8741
Expected Cum Prob: 0.8367 Observed Cum Prob: 0.8641
Expected Cum Prob: 0.8367 Observed Cum Prob: 0.8541
Expected Cum Prob: 0.8236 Observed Cum Prob: 0.8441
Expected Cum Prob: 0.8044 Observed Cum Prob: 0.8342
Expected Cum Prob: 0.7999 Observed Cum Prob: 0.8242
Expected Cum Prob: 0.7828 Observed Cum Prob: 0.8142
Expected Cum Prob: 0.7805 Observed Cum Prob: 0.8042
Expected Cum Prob: 0.7732 Observed Cum Prob: 0.7943
Expected Cum Prob: 0.7549 Observed Cum Prob: 0.7843
Expected Cum Prob: 0.7498 Observed Cum Prob: 0.7743
Expected Cum Prob: 0.7475 Observed Cum Prob: 0.7643
Expected Cum Prob: 0.7198 Observed Cum Prob: 0.7544
Expected Cum Prob: 0.7198 Observed Cum Prob: 0.7444
Expected Cum Prob: 0.7077 Observed Cum Prob: 0.7344
Expected Cum Prob: 0.7048 Observed Cum Prob: 0.7244
Expected Cum Prob: 0.7032 Observed Cum Prob: 0.7145
Expected Cum Prob: 0.6840 Observed Cum Prob: 0.7045
Expected Cum Prob: 0.6782 Observed Cum Prob: 0.6945
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6845
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6746
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6646
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6546
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6446
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6347
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6247
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6147
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6047
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5948
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5848
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5748
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5648
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5549
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5449
Expected Cum Prob: 0.6430 Observed Cum Prob: 0.5349
Expected Cum Prob: 0.6342 Observed Cum Prob: 0.5249
Expected Cum Prob: 0.6099 Observed Cum Prob: 0.5150
Expected Cum Prob: 0.6083 Observed Cum Prob: 0.5050
Expected Cum Prob: 0.6083 Observed Cum Prob: 0.4950
Expected Cum Prob: 0.5991 Observed Cum Prob: 0.4850
Expected Cum Prob: 0.5832 Observed Cum Prob: 0.4751
Expected Cum Prob: 0.5681 Observed Cum Prob: 0.4651
Expected Cum Prob: 0.5663 Observed Cum Prob: 0.4551
Expected Cum Prob: 0.5569 Observed Cum Prob: 0.4451
Expected Cum Prob: 0.5524 Observed Cum Prob: 0.4352
Expected Cum Prob: 0.5522 Observed Cum Prob: 0.4252
Expected Cum Prob: 0.5443 Observed Cum Prob: 0.4152
Expected Cum Prob: 0.5236 Observed Cum Prob: 0.4052
Expected Cum Prob: 0.5236 Observed Cum Prob: 0.3953
Expected Cum Prob: 0.5094 Observed Cum Prob: 0.3853
Expected Cum Prob: 0.4459 Observed Cum Prob: 0.3753
Expected Cum Prob: 0.4457 Observed Cum Prob: 0.3653
Expected Cum Prob: 0.4428 Observed Cum Prob: 0.3554
Expected Cum Prob: 0.4378 Observed Cum Prob: 0.3454
Expected Cum Prob: 0.3945 Observed Cum Prob: 0.3354
Expected Cum Prob: 0.3840 Observed Cum Prob: 0.3254
Expected Cum Prob: 0.3582 Observed Cum Prob: 0.3155
Expected Cum Prob: 0.3542 Observed Cum Prob: 0.3055
Expected Cum Prob: 0.3229 Observed Cum Prob: 0.2955
Expected Cum Prob: 0.3118 Observed Cum Prob: 0.2855
Expected Cum Prob: 0.2973 Observed Cum Prob: 0.2756
Expected Cum Prob: 0.2512 Observed Cum Prob: 0.2656
Expected Cum Prob: 0.2388 Observed Cum Prob: 0.2556
Expected Cum Prob: 0.2352 Observed Cum Prob: 0.2456
Expected Cum Prob: 0.2229 Observed Cum Prob: 0.2357
Expected Cum Prob: 0.2208 Observed Cum Prob: 0.2257
Expected Cum Prob: 0.2100 Observed Cum Prob: 0.2157
Expected Cum Prob: 0.2042 Observed Cum Prob: 0.2057
Expected Cum Prob: 0.1933 Observed Cum Prob: 0.1958
Expected Cum Prob: 0.1901 Observed Cum Prob: 0.1858
Expected Cum Prob: 0.1889 Observed Cum Prob: 0.1758
Expected Cum Prob: 0.1622 Observed Cum Prob: 0.1658
Expected Cum Prob: 0.1432 Observed Cum Prob: 0.1559
Expected Cum Prob: 0.1371 Observed Cum Prob: 0.1459
Expected Cum Prob: 0.1371 Observed Cum Prob: 0.1359
Expected Cum Prob: 0.1204 Observed Cum Prob: 0.1259
Expected Cum Prob: 0.1204 Observed Cum Prob: 0.1160
Expected Cum Prob: 0.1195 Observed Cum Prob: 0.1060
Expected Cum Prob: 0.1135 Observed Cum Prob: 0.0960
Expected Cum Prob: 0.0973 Observed Cum Prob: 0.0860
Expected Cum Prob: 0.0855 Observed Cum Prob: 0.0761
Expected Cum Prob: 0.0778 Observed Cum Prob: 0.0661
Expected Cum Prob: 0.0493 Observed Cum Prob: 0.0561
Expected Cum Prob: 0.0360 Observed Cum Prob: 0.0461
Expected Cum Prob: 0.0278 Observed Cum Prob: 0.0362
Expected Cum Prob: 0.0255 Observed Cum Prob: 0.0262
Expected Cum Prob: 0.0153 Observed Cum Prob: 0.0162
Expected Cum Prob: 0.0064 Observed Cum Prob: 0.0062
Expected Cum Prob: 0.0022 0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0.0

Charts
Charts - *sresid by *zpred Scatterplot - May 13, 2024
Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: 0.2777 Regression Standardized Predicted Value: -0.4311
Regression Studentized Residual: 1.0961 Regression Standardized Predicted Value: 0.6611
Regression Studentized Residual: 0.5868 Regression Standardized Predicted Value: 0.4799
Regression Studentized Residual: 0.7563 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: -0.7703 Regression Standardized Predicted Value: 0.3163
Regression Studentized Residual: -0.1394 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: -0.3671 Regression Standardized Predicted Value: 1.0114
Regression Studentized Residual: -1.3221 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: -0.8910 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: 0.1732 Regression Standardized Predicted Value: -2.2582
Regression Studentized Residual: 0.1881 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: 0.0601 Regression Standardized Predicted Value: -0.0045
Regression Studentized Residual: -1.9392 Regression Standardized Predicted Value: -0.5532
Regression Studentized Residual: 0.6836 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -0.1374 Regression Standardized Predicted Value: 0.8946
Regression Studentized Residual: 0.3710 Regression Standardized Predicted Value: -1.1315
Regression Studentized Residual: 2.2659 Regression Standardized Predicted Value: -0.1504
Regression Studentized Residual: 1.3752 Regression Standardized Predicted Value: -0.2028
Regression Studentized Residual: 0.3526 Regression Standardized Predicted Value: -1.0967
Regression Studentized Residual: 0.1336 Regression Standardized Predicted Value: 0.8946
Regression Studentized Residual: -0.6791 Regression Standardized Predicted Value: -1.2307
Regression Studentized Residual: 0.7880 Regression Standardized Predicted Value: -0.5356
Regression Studentized Residual: 0.1365 Regression Standardized Predicted Value: -0.1212
Regression Studentized Residual: -2.8954 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: 0.6971 Regression Standardized Predicted Value: -0.0045
Regression Studentized Residual: -0.8887 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.9922 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 1.0638
Regression Studentized Residual: 0.2194 Regression Standardized Predicted Value: -0.1212
Regression Studentized Residual: -0.7835 Regression Standardized Predicted Value: 0.4451
Regression Studentized Residual: 0.7879 Regression Standardized Predicted Value: -1.5286
Regression Studentized Residual: 1.5951 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: 1.1005 Regression Standardized Predicted Value: -0.2968
Regression Studentized Residual: -2.2352 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: -0.8746 Regression Standardized Predicted Value: -0.7692
Regression Studentized Residual: -1.2502 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.4678 Regression Standardized Predicted Value: 0.7135
Regression Studentized Residual: 0.5410 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -1.1862 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: 0.2777 Regression Standardized Predicted Value: 0.0480
Regression Studentized Residual: 1.1553 Regression Standardized Predicted Value: 0.3807
Regression Studentized Residual: 0.8479 Regression Standardized Predicted Value: -0.3784
Regression Studentized Residual: -0.5876 Regression Standardized Predicted Value: -0.5479
Regression Studentized Residual: 1.7406 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: -0.9958 Regression Standardized Predicted Value: -2.3053
Regression Studentized Residual: -0.8827 Regression Standardized Predicted Value: -1.9606
Regression Studentized Residual: 0.9587 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: -1.8182 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: 1.1005 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.9922 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: -1.1056 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 1.4610
Regression Studentized Residual: -0.1626 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: 0.6807 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.6647
Regression Studentized Residual: 0.2585 Regression Standardized Predicted Value: 0.2115
Regression Studentized Residual: 0.4848 Regression Standardized Predicted Value: -0.5479
Regression Studentized Residual: 0.1466 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: -0.4677 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: 0.0601 Regression Standardized Predicted Value: -0.0808
Regression Studentized Residual: 1.3100 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: -1.1056 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.1332
Regression Studentized Residual: 1.3285 Regression Standardized Predicted Value: -0.6352
Regression Studentized Residual: -0.3003 Regression Standardized Predicted Value: 0.1472
Regression Studentized Residual: 0.5419 Regression Standardized Predicted Value: -1.0967
Regression Studentized Residual: 1.7160 Regression Standardized Predicted Value: -1.1195
Regression Studentized Residual: 2.3532 Regression Standardized Predicted Value: 0.4799
Regression Studentized Residual: -0.8137 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.7344
Regression Studentized Residual: -0.7316 Regression Standardized Predicted Value: -1.5462
Regression Studentized Residual: -0.5036 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -1.1862 Regression Standardized Predicted Value: -1.4119
Regression Studentized Residual: -1.6822 Regression Standardized Predicted Value: -2.7953
Regression Studentized Residual: -0.4078 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.6647
Regression Studentized Residual: -0.2757 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.1856
Regression Studentized Residual: -0.7154 Regression Standardized Predicted Value: -0.7987
Regression Studentized Residual: -0.1451 Regression Standardized Predicted Value: -1.6630
Regression Studentized Residual: -1.4723 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.0480
Regression Studentized Residual: 0.1119 Regression Standardized Predicted Value: 0.5967
Regression Studentized Residual: -1.9705 Regression Standardized Predicted Value: -1.5462
Regression Studentized Residual: 0.5611 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.6611
Regression Studentized Residual: 0.5868 Regression Standardized Predicted Value: -3.5024
Regression Studentized Residual: 0.3015 Regression Standardized Predicted Value: -0.0340
Regression Studentized Residual: -1.3877 Regression Standardized Predicted Value: 0.3631
Regression Studentized Residual: 0.8672 Regression Standardized Predicted Value: -0.9799
Regression Studentized Residual: 0.0238 Regression Standardized Predicted Value: -2.4868
Regression Studentized Residual: -1.3387 Regression Standardized Predicted Value: -1.0671
Regression Studentized Residual: -2.5449 Regression Standardized Predicted Value: 0.1996
Regression Studentized Residual: -1.0821 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 -3 -2 -1 0 1 2 3 3 2 1 0 -1 -2 -3 -4 -3 -2 -1 0 1 2 2 1 0 -1 -2 -3 -4

{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[0.8770544189577038,0.3869399631709206,1],[0.1995594310235102,-1.082087062703034,2],[-1.067118771421487,-2.54485696246993,3],[-2.486835784189643,-1.338679257285007,4],[-0.9798898905839587,0.02381717302460286,5],[0.363132028747489,0.8671530720424083,6],[-0.03400709730064654,-1.387660011918009,7],[-3.502361131522872,0.3015179109175676,8],[0.6610742174211561,0.5868007015869607,9],[0.8770544189577038,0.3869399631709206,10],[-1.546219884606743,0.5610663746921375,11],[0.5966985570716477,-1.970531943853446,12],[0.04795488983647097,0.1119415213072168,13],[0.8770544189577038,0.3869399631709206,14],[-1.663003148768822,-1.472302122314143,15],[-0.7987309660723709,-0.1450591379218639,16],[-0.1856116384876858,-0.7154443926572276,17],[0.8770544189577038,0.3869399631709206,18],[-0.6647127516729407,-0.275701623878564,19],[0.8770544189577038,0.3869399631709206,20],[0.8770544189577038,0.3869399631709206,21],[-2.795311760264127,-0.4077915000842367,22],[-1.411850293657053,-1.682184832388344,23],[0.8770544189577038,-1.186198818039964,24],[-1.546219884606743,-0.5036431470491598,25],[-0.7343553057228605,-0.7315546014416101,26],[0.8770544189577038,0.3869399631709206,27],[0.4799152929095683,-0.8136631078624421,28],[-1.119526375234057,2.353180516902576,29],[-1.096673154746037,1.715990257409124,30],[0.1471518272109413,0.54185613698178,31],[-0.6351583683483921,-0.3003024575870214,32],[-0.1332040346751168,1.328494626594247,33],[0.8770544189577038,0.3869399631709206,34],[0.2291138143480588,-1.105573979903579,35],[-0.08079643086254591,1.310019919976332,36],[1.22740421144394,0.06012083719053045,37],[1.22740421144394,-0.4677118286874457,38],[-0.5479294875108613,0.1465938857868129,39],[0.2115274875604497,0.4847778408238074,40],[-0.6647127516729407,0.2585035454889179,41],[0.8770544189577038,0.3869399631709206,42],[0.5618772800466858,0.6806732620561101,43],[1.460970739768099,-0.1626341209203926,44],[0.8770544189577038,0.3869399631709206,45],[0.8770544189577038,0.3869399631709206,46],[0.2291138143480588,-1.105573979903579,47],[0.2291138143480588,0.9922208573578843,48],[0.1123305501859794,1.100494704923887,49],[0.8770544189577038,0.3869399631709206,50],[0.8770544189577038,0.3869399631709206,51],[0.9938376831197832,-1.81824025507866,52],[-1.960593960892228,0.9586573119139821,53],[-2.305325483127794,-0.882740585246279,54],[0.1123305501859794,-0.995754671433051,55],[-0.5479294875108613,1.740563640952571,56],[-0.3783872429859548,-0.5876135872567033,57],[0.380718355535098,0.8479154771075558,58],[0.04795488983647097,1.155253610282416,59],[0.9938376831197832,0.2776539951124444,60],[0.8770544189577038,-1.186198818039964,61],[0.713481821233725,0.540967197429027,62],[0.2291138143480588,0.4677721480425185,63],[-0.7691765827478203,-1.250175434654229,64],[0.5442909532590767,-0.8745974107663264,65],[-0.2967766323990956,-2.235181588107385,66],[0.1123305501859794,1.100494704923887,67],[-1.528633557819132,1.595077839503353,68],[0.4450940158846085,0.7879158138045269,69],[-0.1212359781381773,-0.7835353030486181,70],[1.063831613719961,0.2193882656497329,71],[0.8770544189577038,0.3869399631709206,72],[0.2291138143480588,0.9922208573578843,73],[-0.004452713976097957,-0.8887149541843185,74],[0.5442909532590767,0.6970787966922278,75],[-0.1212359781381773,-2.895391169418792,76],[-0.5356100544236616,0.1364841158352485,77],[-1.230691369145465,0.7880315831549031,78],[0.8946407457453128,-0.6790626515845035,79],[-1.096673154746037,0.1335850119279103,80],[-0.2028465887250346,0.3525508530930708,81],[-0.1504389849124656,1.375191868493082,82],[-1.131494431770996,2.265890483557931,83],[0.8946407457453128,0.3709621929770914,84],[0.8770544189577038,-0.137439630566041,85],[-0.5531963812112707,0.683608495410251,86],[-0.004452713976097957,-1.93916236830854,87],[1.22740421144394,0.06012083719053045,88],[-2.258184773015633,0.1880597442347761,89],[0.5442909532590767,0.1731867275393764,90],[0.5618772800466858,-0.8910124302035364,91],[1.011424009907392,-1.322065828447673,92],[0.5618772800466858,-0.3671171994503208,93],[0.3163426951855896,-0.139401063653788,94],[0.9938376831197832,-0.770293129983108,95],[0.8770544189577038,0.3869399631709206,96],[0.4799152929095683,0.7563421907700929,97],[0.6610742174211561,0.5868007015869607,98],[-0.431146223348782,1.096149218341028,99],[0.9938376831197832,0.2776539951124444,100]],"fields":[{"min":-3.502361131522872,"id":"fVariable","max":1.460970739768099,"label":"X Variable_1"},{"min":-2.895391169418792,"id":"fVariable1","max":2.353180516902576,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Studentized Residual"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}

Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_1
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 1.89882870
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

DESCRIPTIVES VARIABLES=TOTAL_X1 TOTAL_X2 TOTAL_X3 TOTAL_Y
  /STATISTICS=MEAN STDDEV MIN MAX.

Descriptives
Descriptives - Descriptive Statistics - May 13, 2024
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  N Minimum Maximum Mean Std. Deviation
TOTAL_X1 100 8 15 13.97 1.466
TOTAL_X2 100 3 15 12.82 2.341
TOTAL_X3 100 6 15 13.19 2.102
TOTAL_Y 100 11 20 17.70 2.603
Valid N (listwise) 100        
Log
Log - Log - May 13, 2024

EXAMINE VARIABLES=TOTAL_X1
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES EXTREME
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Explore
Explore - Case Processing Summary - May 13, 2024
Case Processing SummaryCase Processing Summary, table, 3 levels of column headers and 1 levels of row headers, table with 7 columns and 5 rows
  Cases
Valid Missing Total
N Percent N Percent N Percent
TOTAL_X1 100 100.0% 0 0.0% 100 100.0%
Explore
Explore - Descriptives - May 13, 2024
DescriptivesDescriptives, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 15 rows
  Statistic Std. Error
TOTAL_X1 Mean 13.97 .147
95% Confidence Interval for Mean Lower Bound 13.68  
Upper Bound 14.26  
5% Trimmed Mean 14.12  
Median 15.00  
Variance 2.151  
Std. Deviation 1.466  
Minimum 8  
Maximum 15  
Range 7  
Interquartile Range 2  
Skewness -1.575 .241
Kurtosis 2.638 .478
Explore
Explore - Extreme Values - May 13, 2024
Extreme ValuesExtreme Values, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 14 rows
  Case Number Value
TOTAL_X1 Highest 1 1 15
2 9 15
3 10 15
4 14 15
5 18 15a
Lowest 1 4 8
2 8 9
3 54 10
4 99 12
5 89 12b
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes.    
b. Only a partial list of cases with the value 12 are shown in the table of lower extremes.    
TOTAL_X1
TOTAL_X1 - Stem-and-Leaf Plot - May 13, 2024


TOTAL_X1 Stem-and-Leaf Plot



 Frequency    Stem &  Leaf



     2.00 Extremes    (=<9.0)

     1.00       10 .  0

      .00       10 .

      .00       11 .

      .00       11 .

    18.00       12 .  000000000000000000

      .00       12 .

     8.00       13 .  00000000

      .00       13 .

    15.00       14 .  000000000000000

      .00       14 .

    56.00       15 .  00000000000000000000000000000000000000000000000000000000



 Stem width:         1

 Each leaf:        1 case(s)





TOTAL_X1
TOTAL_X1 - Boxplot - May 13, 2024
Variables: TOTAL_X1
Value: 9 Variables: TOTAL_X1
Value: 8 8 10 12 14 14 12 10 8 TOTAL_X1 TOTAL_X1

Log
Log - Log - May 13, 2024

EXAMINE VARIABLES=TOTAL_X2
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES EXTREME
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Explore
Explore - Case Processing Summary - May 13, 2024
Case Processing SummaryCase Processing Summary, table, 3 levels of column headers and 1 levels of row headers, table with 7 columns and 5 rows
  Cases
Valid Missing Total
N Percent N Percent N Percent
TOTAL_X2 100 100.0% 0 0.0% 100 100.0%
Explore
Explore - Descriptives - May 13, 2024
DescriptivesDescriptives, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 15 rows
  Statistic Std. Error
TOTAL_X2 Mean 12.82 .234
95% Confidence Interval for Mean Lower Bound 12.36  
Upper Bound 13.28  
5% Trimmed Mean 13.08  
Median 13.00  
Variance 5.482  
Std. Deviation 2.341  
Minimum 3  
Maximum 15  
Range 12  
Interquartile Range 3  
Skewness -1.696 .241
Kurtosis 4.062 .478
Explore
Explore - Extreme Values - May 13, 2024
Extreme ValuesExtreme Values, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 14 rows
  Case Number Value
TOTAL_X2 Highest 1 1 15
2 6 15
3 10 15
4 14 15
5 15 15a
Lowest 1 89 3
2 57 4
3 54 6
4 82 8
5 71 9b
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes.    
b. Only a partial list of cases with the value 9 are shown in the table of lower extremes.    
TOTAL_X2
TOTAL_X2 - Stem-and-Leaf Plot - May 13, 2024


TOTAL_X2 Stem-and-Leaf Plot



 Frequency    Stem &  Leaf



     3.00 Extremes    (=<6.0)

     1.00        8 .  0

      .00        8 .

     4.00        9 .  0000

      .00        9 .

     6.00       10 .  000000

      .00       10 .

     3.00       11 .  000

      .00       11 .

    24.00       12 .  000000000000000000000000

      .00       12 .

    12.00       13 .  000000000000

      .00       13 .

    17.00       14 .  00000000000000000

      .00       14 .

    30.00       15 .  000000000000000000000000000000



 Stem width:         1

 Each leaf:        1 case(s)





TOTAL_X2
TOTAL_X2 - Boxplot - May 13, 2024
Variables: TOTAL_X2
Value: 6 Variables: TOTAL_X2
Value: 4 Variables: TOTAL_X2
Value: 3 2 4 6 8 10 12 14 14 12 10 8 6 4 2 TOTAL_X2 TOTAL_X2

Log
Log - Log - May 13, 2024

EXAMINE VARIABLES=TOTAL_X3
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES EXTREME
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Explore
Explore - Case Processing Summary - May 13, 2024
Case Processing SummaryCase Processing Summary, table, 3 levels of column headers and 1 levels of row headers, table with 7 columns and 5 rows
  Cases
Valid Missing Total
N Percent N Percent N Percent
TOTAL_X3 100 100.0% 0 0.0% 100 100.0%
Explore
Explore - Descriptives - May 13, 2024
DescriptivesDescriptives, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 15 rows
  Statistic Std. Error
TOTAL_X3 Mean 13.19 .210
95% Confidence Interval for Mean Lower Bound 12.77  
Upper Bound 13.61  
5% Trimmed Mean 13.39  
Median 14.00  
Variance 4.418  
Std. Deviation 2.102  
Minimum 6  
Maximum 15  
Range 9  
Interquartile Range 3  
Skewness -1.222 .241
Kurtosis 1.311 .478
Explore
Explore - Extreme Values - May 13, 2024
Extreme ValuesExtreme Values, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 14 rows
  Case Number Value
TOTAL_X3 Highest 1 1 15
2 2 15
3 4 15
4 6 15
5 7 15a
Lowest 1 89 6
2 22 6
3 77 9
4 64 9
5 53 9b
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes.    
b. Only a partial list of cases with the value 9 are shown in the table of lower extremes.    
TOTAL_X3
TOTAL_X3 - Stem-and-Leaf Plot - May 13, 2024


TOTAL_X3 Stem-and-Leaf Plot



 Frequency    Stem &  Leaf



     2.00 Extremes    (=<6.0)

     5.00        9 .  00000

      .00        9 .

     5.00       10 .  00000

      .00       10 .

     5.00       11 .  00000

      .00       11 .

    18.00       12 .  000000000000000000

      .00       12 .

    11.00       13 .  00000000000

      .00       13 .

    12.00       14 .  000000000000

      .00       14 .

    42.00       15 .  000000000000000000000000000000000000000000



 Stem width:         1

 Each leaf:        1 case(s)





TOTAL_X3
TOTAL_X3 - Boxplot - May 13, 2024
Variables: TOTAL_X3
Value: 6 Variables: TOTAL_X3
Value: 6 6 8 10 12 14 16 16 14 12 10 8 6 TOTAL_X3 TOTAL_X3

Log
Log - Log - May 13, 2024

EXAMINE VARIABLES=TOTAL_Y
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES EXTREME
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Explore
Explore - Case Processing Summary - May 13, 2024
Case Processing SummaryCase Processing Summary, table, 3 levels of column headers and 1 levels of row headers, table with 7 columns and 5 rows
  Cases
Valid Missing Total
N Percent N Percent N Percent
TOTAL_Y 100 100.0% 0 0.0% 100 100.0%
Explore
Explore - Descriptives - May 13, 2024
DescriptivesDescriptives, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 15 rows
  Statistic Std. Error
TOTAL_Y Mean 17.70 .260
95% Confidence Interval for Mean Lower Bound 17.18  
Upper Bound 18.22  
5% Trimmed Mean 17.91  
Median 18.50  
Variance 6.778  
Std. Deviation 2.603  
Minimum 11  
Maximum 20  
Range 9  
Interquartile Range 4  
Skewness -.953 .241
Kurtosis -.034 .478
Explore
Explore - Extreme Values - May 13, 2024
Extreme ValuesExtreme Values, table, 1 levels of column headers and 3 levels of row headers, table with 5 columns and 14 rows
  Case Number Value
TOTAL_Y Highest 1 1 20
2 6 20
3 9 20
4 10 20
5 14 20a
Lowest 1 4 11
2 3 11
3 76 12
4 54 12
5 23 12b
a. Only a partial list of cases with the value 20 are shown in the table of upper extremes.    
b. Only a partial list of cases with the value 12 are shown in the table of lower extremes.    
TOTAL_Y
TOTAL_Y - Stem-and-Leaf Plot - May 13, 2024


TOTAL_Y Stem-and-Leaf Plot



 Frequency    Stem &  Leaf



     2.00       11 .  00

      .00       11 .

     6.00       12 .  000000

      .00       12 .

     1.00       13 .  0

      .00       13 .

     4.00       14 .  0000

      .00       14 .

     3.00       15 .  000

      .00       15 .

    16.00       16 .  0000000000000000

      .00       16 .

    10.00       17 .  0000000000

      .00       17 .

     8.00       18 .  00000000

      .00       18 .

     8.00       19 .  00000000

      .00       19 .

    42.00       20 .  000000000000000000000000000000000000000000



 Stem width:         1

 Each leaf:        1 case(s)





TOTAL_Y
TOTAL_Y - Boxplot - May 13, 2024
10 12 14 16 18 20 20 18 16 14 12 10 TOTAL_Y TOTAL_Y

Log
Log - Log - May 13, 2024

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SCATTERPLOT=(*SRESID ,*ZPRED) (*ZPRED ,TOTAL_Y)
  /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
  /SAVE RESID.

Regression
Regression - Descriptive Statistics - May 13, 2024
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 6 rows
  Mean Std. Deviation N
TOTAL_Y 17.70 2.603 100
TOTAL_X1 13.97 1.466 100
TOTAL_X2 12.82 2.341 100
TOTAL_X3 13.19 2.102 100
Regression
Regression - Correlations - May 13, 2024
CorrelationsCorrelations, table, 1 levels of column headers and 2 levels of row headers, table with 6 columns and 14 rows
  TOTAL_Y TOTAL_X1 TOTAL_X2 TOTAL_X3
Pearson Correlation TOTAL_Y 1.000 .545 .274 .498
TOTAL_X1 .545 1.000 .416 .225
TOTAL_X2 .274 .416 1.000 .516
TOTAL_X3 .498 .225 .516 1.000
Sig. (1-tailed) TOTAL_Y . .000 .003 .000
TOTAL_X1 .000 . .000 .012
TOTAL_X2 .003 .000 . .000
TOTAL_X3 .000 .012 .000 .
N TOTAL_Y 100 100 100 100
TOTAL_X1 100 100 100 100
TOTAL_X2 100 100 100 100
TOTAL_X3 100 100 100 100
Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson
1 .684a .468 .451 1.928 1.869
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 9 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -.238 2.032   -.117 .907    
TOTAL_X1 .915 .145 .516 6.298 .000 .827 1.210
TOTAL_X2 -.208 .104 -.187 -2.009 .047 .639 1.565
TOTAL_X3 .593 .108 .479 5.506 .000 .734 1.363
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Collinearity Diagnostics - May 13, 2024
Collinearity DiagnosticsaCollinearity Diagnostics, table, 2 levels of column headers and 2 levels of row headers, table with 8 columns and 8 rows
Model Dimension Eigenvalue Condition Index Variance Proportions
(Constant) TOTAL_X1 TOTAL_X2 TOTAL_X3
1 1 3.962 1.000 .00 .00 .00 .00
2 .019 14.509 .13 .09 .48 .09
3 .014 16.862 .00 .05 .41 .82
4 .005 28.327 .87 .85 .10 .09
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 15 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Standard Error of Predicted Value .208 .917 .359 .140 100
Adjusted Predicted Value 11.37 20.33 17.71 1.769 100
Residual -5.484 4.315 .000 1.899 100
Std. Residual -2.844 2.238 .000 .985 100
Stud. Residual -2.895 2.353 -.002 1.007 100
Deleted Residual -5.684 4.795 -.008 1.985 100
Stud. Deleted Residual -3.015 2.411 -.004 1.019 100
Mahal. Distance .167 21.399 2.970 3.867 100
Cook's Distance .000 .162 .012 .025 100
Centered Leverage Value .002 .216 .030 .039 100
a. Dependent Variable: TOTAL_Y
Charts
Charts - *zresid Histogram - May 13, 2024
Regression Standardized Residual: 5.140E-16
Frequency: 1 Regression Standardized Residual: 2.2324
Frequency: 1 Regression Standardized Residual: 2.2324
Frequency: 1 Regression Standardized Residual: 1.6930
Frequency: 1 Regression Standardized Residual: 1.6930
Frequency: 1 Regression Standardized Residual: 1.5675
Frequency: 1 Regression Standardized Residual: 1.5675
Frequency: 1 Regression Standardized Residual: 1.1877
Frequency: 1 Regression Standardized Residual: 1.1877
Frequency: 1 Regression Standardized Residual: 0.8259
Frequency: 1 Regression Standardized Residual: 0.8259
Frequency: 1 Regression Standardized Residual: 0.4336
Frequency: 1 Regression Standardized Residual: 0.4336
Frequency: 1 Regression Standardized Residual: 0.1634
Frequency: 1 Regression Standardized Residual: 0.1634
Frequency: 1 Regression Standardized Residual: -0.1893
Frequency: 1 Regression Standardized Residual: -0.1893
Frequency: 1 Regression Standardized Residual: -0.4440
Frequency: 1 Regression Standardized Residual: -0.4440
Frequency: 1 Regression Standardized Residual: -0.8071
Frequency: 1 Regression Standardized Residual: -0.8071
Frequency: 1 Regression Standardized Residual: -1.1602
Frequency: 1 Regression Standardized Residual: -1.1602
Frequency: 1 Regression Standardized Residual: -1.4802
Frequency: 1 Regression Standardized Residual: -1.4802
Frequency: 1 Regression Standardized Residual: -1.8886
Frequency: 1 Regression Standardized Residual: -1.8886
Frequency: 1 Regression Standardized Residual: -2.1633
Frequency: 1 Regression Standardized Residual: -2.1633
Frequency: 1 Regression Standardized Residual: -2.4890
Frequency: 1 Regression Standardized Residual: -2.4890
Frequency: 1 Regression Standardized Residual: -2.8440
Frequency: 1 Regression Standardized Residual: -2.8440
Frequency: 1 0 5 10 15 20 25 25 20 15 10 5 0 -3 -2 -1 0 1 2 3 3 2 1 0 -1 -2 -3

Charts
Charts - *zresid Normal P-P Plot - May 13, 2024
Observed Cum Prob: 0
Expected Cum Prob: 0 Observed Cum Prob: 0.9938
Expected Cum Prob: 0.9874 Observed Cum Prob: 0.9838
Expected Cum Prob: 0.9870 Observed Cum Prob: 0.9738
Expected Cum Prob: 0.9553 Observed Cum Prob: 0.9638
Expected Cum Prob: 0.9542 Observed Cum Prob: 0.9539
Expected Cum Prob: 0.9415 Observed Cum Prob: 0.9439
Expected Cum Prob: 0.9085 Observed Cum Prob: 0.9339
Expected Cum Prob: 0.9059 Observed Cum Prob: 0.9239
Expected Cum Prob: 0.8975 Observed Cum Prob: 0.9140
Expected Cum Prob: 0.8746 Observed Cum Prob: 0.9040
Expected Cum Prob: 0.8619 Observed Cum Prob: 0.8940
Expected Cum Prob: 0.8619 Observed Cum Prob: 0.8840
Expected Cum Prob: 0.8582 Observed Cum Prob: 0.8741
Expected Cum Prob: 0.8367 Observed Cum Prob: 0.8641
Expected Cum Prob: 0.8367 Observed Cum Prob: 0.8541
Expected Cum Prob: 0.8236 Observed Cum Prob: 0.8441
Expected Cum Prob: 0.8044 Observed Cum Prob: 0.8342
Expected Cum Prob: 0.7999 Observed Cum Prob: 0.8242
Expected Cum Prob: 0.7828 Observed Cum Prob: 0.8142
Expected Cum Prob: 0.7805 Observed Cum Prob: 0.8042
Expected Cum Prob: 0.7732 Observed Cum Prob: 0.7943
Expected Cum Prob: 0.7549 Observed Cum Prob: 0.7843
Expected Cum Prob: 0.7498 Observed Cum Prob: 0.7743
Expected Cum Prob: 0.7475 Observed Cum Prob: 0.7643
Expected Cum Prob: 0.7198 Observed Cum Prob: 0.7544
Expected Cum Prob: 0.7198 Observed Cum Prob: 0.7444
Expected Cum Prob: 0.7077 Observed Cum Prob: 0.7344
Expected Cum Prob: 0.7048 Observed Cum Prob: 0.7244
Expected Cum Prob: 0.7032 Observed Cum Prob: 0.7145
Expected Cum Prob: 0.6840 Observed Cum Prob: 0.7045
Expected Cum Prob: 0.6782 Observed Cum Prob: 0.6945
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6845
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6746
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6646
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6546
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6446
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6347
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6247
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6147
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.6047
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5948
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5848
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5748
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5648
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5549
Expected Cum Prob: 0.6490 Observed Cum Prob: 0.5449
Expected Cum Prob: 0.6430 Observed Cum Prob: 0.5349
Expected Cum Prob: 0.6342 Observed Cum Prob: 0.5249
Expected Cum Prob: 0.6099 Observed Cum Prob: 0.5150
Expected Cum Prob: 0.6083 Observed Cum Prob: 0.5050
Expected Cum Prob: 0.6083 Observed Cum Prob: 0.4950
Expected Cum Prob: 0.5991 Observed Cum Prob: 0.4850
Expected Cum Prob: 0.5832 Observed Cum Prob: 0.4751
Expected Cum Prob: 0.5681 Observed Cum Prob: 0.4651
Expected Cum Prob: 0.5663 Observed Cum Prob: 0.4551
Expected Cum Prob: 0.5569 Observed Cum Prob: 0.4451
Expected Cum Prob: 0.5524 Observed Cum Prob: 0.4352
Expected Cum Prob: 0.5522 Observed Cum Prob: 0.4252
Expected Cum Prob: 0.5443 Observed Cum Prob: 0.4152
Expected Cum Prob: 0.5236 Observed Cum Prob: 0.4052
Expected Cum Prob: 0.5236 Observed Cum Prob: 0.3953
Expected Cum Prob: 0.5094 Observed Cum Prob: 0.3853
Expected Cum Prob: 0.4459 Observed Cum Prob: 0.3753
Expected Cum Prob: 0.4457 Observed Cum Prob: 0.3653
Expected Cum Prob: 0.4428 Observed Cum Prob: 0.3554
Expected Cum Prob: 0.4378 Observed Cum Prob: 0.3454
Expected Cum Prob: 0.3945 Observed Cum Prob: 0.3354
Expected Cum Prob: 0.3840 Observed Cum Prob: 0.3254
Expected Cum Prob: 0.3582 Observed Cum Prob: 0.3155
Expected Cum Prob: 0.3542 Observed Cum Prob: 0.3055
Expected Cum Prob: 0.3229 Observed Cum Prob: 0.2955
Expected Cum Prob: 0.3118 Observed Cum Prob: 0.2855
Expected Cum Prob: 0.2973 Observed Cum Prob: 0.2756
Expected Cum Prob: 0.2512 Observed Cum Prob: 0.2656
Expected Cum Prob: 0.2388 Observed Cum Prob: 0.2556
Expected Cum Prob: 0.2352 Observed Cum Prob: 0.2456
Expected Cum Prob: 0.2229 Observed Cum Prob: 0.2357
Expected Cum Prob: 0.2208 Observed Cum Prob: 0.2257
Expected Cum Prob: 0.2100 Observed Cum Prob: 0.2157
Expected Cum Prob: 0.2042 Observed Cum Prob: 0.2057
Expected Cum Prob: 0.1933 Observed Cum Prob: 0.1958
Expected Cum Prob: 0.1901 Observed Cum Prob: 0.1858
Expected Cum Prob: 0.1889 Observed Cum Prob: 0.1758
Expected Cum Prob: 0.1622 Observed Cum Prob: 0.1658
Expected Cum Prob: 0.1432 Observed Cum Prob: 0.1559
Expected Cum Prob: 0.1371 Observed Cum Prob: 0.1459
Expected Cum Prob: 0.1371 Observed Cum Prob: 0.1359
Expected Cum Prob: 0.1204 Observed Cum Prob: 0.1259
Expected Cum Prob: 0.1204 Observed Cum Prob: 0.1160
Expected Cum Prob: 0.1195 Observed Cum Prob: 0.1060
Expected Cum Prob: 0.1135 Observed Cum Prob: 0.0960
Expected Cum Prob: 0.0973 Observed Cum Prob: 0.0860
Expected Cum Prob: 0.0855 Observed Cum Prob: 0.0761
Expected Cum Prob: 0.0778 Observed Cum Prob: 0.0661
Expected Cum Prob: 0.0493 Observed Cum Prob: 0.0561
Expected Cum Prob: 0.0360 Observed Cum Prob: 0.0461
Expected Cum Prob: 0.0278 Observed Cum Prob: 0.0362
Expected Cum Prob: 0.0255 Observed Cum Prob: 0.0262
Expected Cum Prob: 0.0153 Observed Cum Prob: 0.0162
Expected Cum Prob: 0.0064 Observed Cum Prob: 0.0062
Expected Cum Prob: 0.0022 0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0.0

Charts
Charts - *sresid by *zpred Scatterplot - May 13, 2024
Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: 0.2777 Regression Standardized Predicted Value: -0.4311
Regression Studentized Residual: 1.0961 Regression Standardized Predicted Value: 0.6611
Regression Studentized Residual: 0.5868 Regression Standardized Predicted Value: 0.4799
Regression Studentized Residual: 0.7563 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: -0.7703 Regression Standardized Predicted Value: 0.3163
Regression Studentized Residual: -0.1394 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: -0.3671 Regression Standardized Predicted Value: 1.0114
Regression Studentized Residual: -1.3221 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: -0.8910 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: 0.1732 Regression Standardized Predicted Value: -2.2582
Regression Studentized Residual: 0.1881 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: 0.0601 Regression Standardized Predicted Value: -0.0045
Regression Studentized Residual: -1.9392 Regression Standardized Predicted Value: -0.5532
Regression Studentized Residual: 0.6836 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -0.1374 Regression Standardized Predicted Value: 0.8946
Regression Studentized Residual: 0.3710 Regression Standardized Predicted Value: -1.1315
Regression Studentized Residual: 2.2659 Regression Standardized Predicted Value: -0.1504
Regression Studentized Residual: 1.3752 Regression Standardized Predicted Value: -0.2028
Regression Studentized Residual: 0.3526 Regression Standardized Predicted Value: -1.0967
Regression Studentized Residual: 0.1336 Regression Standardized Predicted Value: 0.8946
Regression Studentized Residual: -0.6791 Regression Standardized Predicted Value: -1.2307
Regression Studentized Residual: 0.7880 Regression Standardized Predicted Value: -0.5356
Regression Studentized Residual: 0.1365 Regression Standardized Predicted Value: -0.1212
Regression Studentized Residual: -2.8954 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: 0.6971 Regression Standardized Predicted Value: -0.0045
Regression Studentized Residual: -0.8887 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.9922 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 1.0638
Regression Studentized Residual: 0.2194 Regression Standardized Predicted Value: -0.1212
Regression Studentized Residual: -0.7835 Regression Standardized Predicted Value: 0.4451
Regression Studentized Residual: 0.7879 Regression Standardized Predicted Value: -1.5286
Regression Studentized Residual: 1.5951 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: 1.1005 Regression Standardized Predicted Value: -0.2968
Regression Studentized Residual: -2.2352 Regression Standardized Predicted Value: 0.5443
Regression Studentized Residual: -0.8746 Regression Standardized Predicted Value: -0.7692
Regression Studentized Residual: -1.2502 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.4678 Regression Standardized Predicted Value: 0.7135
Regression Studentized Residual: 0.5410 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -1.1862 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: 0.2777 Regression Standardized Predicted Value: 0.0480
Regression Studentized Residual: 1.1553 Regression Standardized Predicted Value: 0.3807
Regression Studentized Residual: 0.8479 Regression Standardized Predicted Value: -0.3784
Regression Studentized Residual: -0.5876 Regression Standardized Predicted Value: -0.5479
Regression Studentized Residual: 1.7406 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: -0.9958 Regression Standardized Predicted Value: -2.3053
Regression Studentized Residual: -0.8827 Regression Standardized Predicted Value: -1.9606
Regression Studentized Residual: 0.9587 Regression Standardized Predicted Value: 0.9938
Regression Studentized Residual: -1.8182 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.1123
Regression Studentized Residual: 1.1005 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: 0.9922 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: -1.1056 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 1.4610
Regression Studentized Residual: -0.1626 Regression Standardized Predicted Value: 0.5619
Regression Studentized Residual: 0.6807 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.6647
Regression Studentized Residual: 0.2585 Regression Standardized Predicted Value: 0.2115
Regression Studentized Residual: 0.4848 Regression Standardized Predicted Value: -0.5479
Regression Studentized Residual: 0.1466 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: -0.4677 Regression Standardized Predicted Value: 1.2274
Regression Studentized Residual: 0.0601 Regression Standardized Predicted Value: -0.0808
Regression Studentized Residual: 1.3100 Regression Standardized Predicted Value: 0.2291
Regression Studentized Residual: -1.1056 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.1332
Regression Studentized Residual: 1.3285 Regression Standardized Predicted Value: -0.6352
Regression Studentized Residual: -0.3003 Regression Standardized Predicted Value: 0.1472
Regression Studentized Residual: 0.5419 Regression Standardized Predicted Value: -1.0967
Regression Studentized Residual: 1.7160 Regression Standardized Predicted Value: -1.1195
Regression Studentized Residual: 2.3532 Regression Standardized Predicted Value: 0.4799
Regression Studentized Residual: -0.8137 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.7344
Regression Studentized Residual: -0.7316 Regression Standardized Predicted Value: -1.5462
Regression Studentized Residual: -0.5036 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: -1.1862 Regression Standardized Predicted Value: -1.4119
Regression Studentized Residual: -1.6822 Regression Standardized Predicted Value: -2.7953
Regression Studentized Residual: -0.4078 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.6647
Regression Studentized Residual: -0.2757 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: -0.1856
Regression Studentized Residual: -0.7154 Regression Standardized Predicted Value: -0.7987
Regression Studentized Residual: -0.1451 Regression Standardized Predicted Value: -1.6630
Regression Studentized Residual: -1.4723 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.0480
Regression Studentized Residual: 0.1119 Regression Standardized Predicted Value: 0.5967
Regression Studentized Residual: -1.9705 Regression Standardized Predicted Value: -1.5462
Regression Studentized Residual: 0.5611 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 Regression Standardized Predicted Value: 0.6611
Regression Studentized Residual: 0.5868 Regression Standardized Predicted Value: -3.5024
Regression Studentized Residual: 0.3015 Regression Standardized Predicted Value: -0.0340
Regression Studentized Residual: -1.3877 Regression Standardized Predicted Value: 0.3631
Regression Studentized Residual: 0.8672 Regression Standardized Predicted Value: -0.9799
Regression Studentized Residual: 0.0238 Regression Standardized Predicted Value: -2.4868
Regression Studentized Residual: -1.3387 Regression Standardized Predicted Value: -1.0671
Regression Studentized Residual: -2.5449 Regression Standardized Predicted Value: 0.1996
Regression Studentized Residual: -1.0821 Regression Standardized Predicted Value: 0.8771
Regression Studentized Residual: 0.3869 -3 -2 -1 0 1 2 3 3 2 1 0 -1 -2 -3 -4 -3 -2 -1 0 1 2 2 1 0 -1 -2 -3 -4

{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[0.8770544189577038,0.3869399631709206,1],[0.1995594310235102,-1.082087062703034,2],[-1.067118771421487,-2.54485696246993,3],[-2.486835784189643,-1.338679257285007,4],[-0.9798898905839587,0.02381717302460286,5],[0.363132028747489,0.8671530720424083,6],[-0.03400709730064654,-1.387660011918009,7],[-3.502361131522872,0.3015179109175676,8],[0.6610742174211561,0.5868007015869607,9],[0.8770544189577038,0.3869399631709206,10],[-1.546219884606743,0.5610663746921375,11],[0.5966985570716477,-1.970531943853446,12],[0.04795488983647097,0.1119415213072168,13],[0.8770544189577038,0.3869399631709206,14],[-1.663003148768822,-1.472302122314143,15],[-0.7987309660723709,-0.1450591379218639,16],[-0.1856116384876858,-0.7154443926572276,17],[0.8770544189577038,0.3869399631709206,18],[-0.6647127516729407,-0.275701623878564,19],[0.8770544189577038,0.3869399631709206,20],[0.8770544189577038,0.3869399631709206,21],[-2.795311760264127,-0.4077915000842367,22],[-1.411850293657053,-1.682184832388344,23],[0.8770544189577038,-1.186198818039964,24],[-1.546219884606743,-0.5036431470491598,25],[-0.7343553057228605,-0.7315546014416101,26],[0.8770544189577038,0.3869399631709206,27],[0.4799152929095683,-0.8136631078624421,28],[-1.119526375234057,2.353180516902576,29],[-1.096673154746037,1.715990257409124,30],[0.1471518272109413,0.54185613698178,31],[-0.6351583683483921,-0.3003024575870214,32],[-0.1332040346751168,1.328494626594247,33],[0.8770544189577038,0.3869399631709206,34],[0.2291138143480588,-1.105573979903579,35],[-0.08079643086254591,1.310019919976332,36],[1.22740421144394,0.06012083719053045,37],[1.22740421144394,-0.4677118286874457,38],[-0.5479294875108613,0.1465938857868129,39],[0.2115274875604497,0.4847778408238074,40],[-0.6647127516729407,0.2585035454889179,41],[0.8770544189577038,0.3869399631709206,42],[0.5618772800466858,0.6806732620561101,43],[1.460970739768099,-0.1626341209203926,44],[0.8770544189577038,0.3869399631709206,45],[0.8770544189577038,0.3869399631709206,46],[0.2291138143480588,-1.105573979903579,47],[0.2291138143480588,0.9922208573578843,48],[0.1123305501859794,1.100494704923887,49],[0.8770544189577038,0.3869399631709206,50],[0.8770544189577038,0.3869399631709206,51],[0.9938376831197832,-1.81824025507866,52],[-1.960593960892228,0.9586573119139821,53],[-2.305325483127794,-0.882740585246279,54],[0.1123305501859794,-0.995754671433051,55],[-0.5479294875108613,1.740563640952571,56],[-0.3783872429859548,-0.5876135872567033,57],[0.380718355535098,0.8479154771075558,58],[0.04795488983647097,1.155253610282416,59],[0.9938376831197832,0.2776539951124444,60],[0.8770544189577038,-1.186198818039964,61],[0.713481821233725,0.540967197429027,62],[0.2291138143480588,0.4677721480425185,63],[-0.7691765827478203,-1.250175434654229,64],[0.5442909532590767,-0.8745974107663264,65],[-0.2967766323990956,-2.235181588107385,66],[0.1123305501859794,1.100494704923887,67],[-1.528633557819132,1.595077839503353,68],[0.4450940158846085,0.7879158138045269,69],[-0.1212359781381773,-0.7835353030486181,70],[1.063831613719961,0.2193882656497329,71],[0.8770544189577038,0.3869399631709206,72],[0.2291138143480588,0.9922208573578843,73],[-0.004452713976097957,-0.8887149541843185,74],[0.5442909532590767,0.6970787966922278,75],[-0.1212359781381773,-2.895391169418792,76],[-0.5356100544236616,0.1364841158352485,77],[-1.230691369145465,0.7880315831549031,78],[0.8946407457453128,-0.6790626515845035,79],[-1.096673154746037,0.1335850119279103,80],[-0.2028465887250346,0.3525508530930708,81],[-0.1504389849124656,1.375191868493082,82],[-1.131494431770996,2.265890483557931,83],[0.8946407457453128,0.3709621929770914,84],[0.8770544189577038,-0.137439630566041,85],[-0.5531963812112707,0.683608495410251,86],[-0.004452713976097957,-1.93916236830854,87],[1.22740421144394,0.06012083719053045,88],[-2.258184773015633,0.1880597442347761,89],[0.5442909532590767,0.1731867275393764,90],[0.5618772800466858,-0.8910124302035364,91],[1.011424009907392,-1.322065828447673,92],[0.5618772800466858,-0.3671171994503208,93],[0.3163426951855896,-0.139401063653788,94],[0.9938376831197832,-0.770293129983108,95],[0.8770544189577038,0.3869399631709206,96],[0.4799152929095683,0.7563421907700929,97],[0.6610742174211561,0.5868007015869607,98],[-0.431146223348782,1.096149218341028,99],[0.9938376831197832,0.2776539951124444,100]],"fields":[{"min":-3.502361131522872,"id":"fVariable","max":1.460970739768099,"label":"X Variable_1"},{"min":-2.895391169418792,"id":"fVariable1","max":2.353180516902576,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Studentized Residual"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}

Charts
Charts - *zpred by TOTAL_Y Scatterplot - May 13, 2024
TOTAL_Y: 20
Regression Standardized Predicted Value: 0.9938 TOTAL_Y: 19
Regression Standardized Predicted Value: -0.4311 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.6611 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.4799 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 18
Regression Standardized Predicted Value: 0.9938 TOTAL_Y: 18
Regression Standardized Predicted Value: 0.3163 TOTAL_Y: 18
Regression Standardized Predicted Value: 0.5619 TOTAL_Y: 17
Regression Standardized Predicted Value: 1.0114 TOTAL_Y: 17
Regression Standardized Predicted Value: 0.5619 TOTAL_Y: 19
Regression Standardized Predicted Value: 0.5443 TOTAL_Y: 14
Regression Standardized Predicted Value: -2.2582 TOTAL_Y: 20
Regression Standardized Predicted Value: 1.2274 TOTAL_Y: 14
Regression Standardized Predicted Value: -0.0045 TOTAL_Y: 18
Regression Standardized Predicted Value: -0.5532 TOTAL_Y: 19
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8946 TOTAL_Y: 20
Regression Standardized Predicted Value: -1.1315 TOTAL_Y: 20
Regression Standardized Predicted Value: -0.1504 TOTAL_Y: 18
Regression Standardized Predicted Value: -0.2028 TOTAL_Y: 16
Regression Standardized Predicted Value: -1.0967 TOTAL_Y: 18
Regression Standardized Predicted Value: 0.8946 TOTAL_Y: 17
Regression Standardized Predicted Value: -1.2307 TOTAL_Y: 17
Regression Standardized Predicted Value: -0.5356 TOTAL_Y: 12
Regression Standardized Predicted Value: -0.1212 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.5443 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.0045 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.2291 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 1.0638 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.1212 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.4451 TOTAL_Y: 18
Regression Standardized Predicted Value: -1.5286 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.1123 TOTAL_Y: 13
Regression Standardized Predicted Value: -0.2968 TOTAL_Y: 17
Regression Standardized Predicted Value: 0.5443 TOTAL_Y: 14
Regression Standardized Predicted Value: -0.7692 TOTAL_Y: 19
Regression Standardized Predicted Value: 0.2291 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.7135 TOTAL_Y: 17
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.9938 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.0480 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.3807 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.3784 TOTAL_Y: 20
Regression Standardized Predicted Value: -0.5479 TOTAL_Y: 16
Regression Standardized Predicted Value: 0.1123 TOTAL_Y: 12
Regression Standardized Predicted Value: -2.3053 TOTAL_Y: 16
Regression Standardized Predicted Value: -1.9606 TOTAL_Y: 16
Regression Standardized Predicted Value: 0.9938 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.1123 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.2291 TOTAL_Y: 16
Regression Standardized Predicted Value: 0.2291 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 1.4610 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.5619 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 17
Regression Standardized Predicted Value: -0.6647 TOTAL_Y: 19
Regression Standardized Predicted Value: 0.2115 TOTAL_Y: 17
Regression Standardized Predicted Value: -0.5479 TOTAL_Y: 19
Regression Standardized Predicted Value: 1.2274 TOTAL_Y: 20
Regression Standardized Predicted Value: 1.2274 TOTAL_Y: 20
Regression Standardized Predicted Value: -0.0808 TOTAL_Y: 16
Regression Standardized Predicted Value: 0.2291 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: -0.1332 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.6352 TOTAL_Y: 19
Regression Standardized Predicted Value: 0.1472 TOTAL_Y: 19
Regression Standardized Predicted Value: -1.0967 TOTAL_Y: 20
Regression Standardized Predicted Value: -1.1195 TOTAL_Y: 17
Regression Standardized Predicted Value: 0.4799 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 15
Regression Standardized Predicted Value: -0.7344 TOTAL_Y: 14
Regression Standardized Predicted Value: -1.5462 TOTAL_Y: 17
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 12
Regression Standardized Predicted Value: -1.4119 TOTAL_Y: 12
Regression Standardized Predicted Value: -2.7953 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.6647 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.1856 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.7987 TOTAL_Y: 12
Regression Standardized Predicted Value: -1.6630 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 18
Regression Standardized Predicted Value: 0.0480 TOTAL_Y: 15
Regression Standardized Predicted Value: 0.5967 TOTAL_Y: 16
Regression Standardized Predicted Value: -1.5462 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.6611 TOTAL_Y: 12
Regression Standardized Predicted Value: -3.5024 TOTAL_Y: 15
Regression Standardized Predicted Value: -0.0340 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.3631 TOTAL_Y: 16
Regression Standardized Predicted Value: -0.9799 TOTAL_Y: 11
Regression Standardized Predicted Value: -2.4868 TOTAL_Y: 11
Regression Standardized Predicted Value: -1.0671 TOTAL_Y: 16
Regression Standardized Predicted Value: 0.1996 TOTAL_Y: 20
Regression Standardized Predicted Value: 0.8771 -4 -3 -2 -1 0 1 2 2 1 0 -1 -2 -3 -4 10 12 14 16 18 20 20 18 16 14 12 10

{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[20,0.8770544189577038,1],[16,0.1995594310235102,2],[11,-1.067118771421487,3],[11,-2.486835784189643,4],[16,-0.9798898905839587,5],[20,0.363132028747489,6],[15,-0.03400709730064654,7],[12,-3.502361131522872,8],[20,0.6610742174211561,9],[20,0.8770544189577038,10],[16,-1.546219884606743,11],[15,0.5966985570716477,12],[18,0.04795488983647097,13],[20,0.8770544189577038,14],[12,-1.663003148768822,15],[16,-0.7987309660723709,16],[16,-0.1856116384876858,17],[20,0.8770544189577038,18],[16,-0.6647127516729407,19],[20,0.8770544189577038,20],[20,0.8770544189577038,21],[12,-2.795311760264127,22],[12,-1.411850293657053,23],[17,0.8770544189577038,24],[14,-1.546219884606743,25],[15,-0.7343553057228605,26],[20,0.8770544189577038,27],[17,0.4799152929095683,28],[20,-1.119526375234057,29],[19,-1.096673154746037,30],[19,0.1471518272109413,31],[16,-0.6351583683483921,32],[20,-0.1332040346751168,33],[20,0.8770544189577038,34],[16,0.2291138143480588,35],[20,-0.08079643086254591,36],[20,1.22740421144394,37],[19,1.22740421144394,38],[17,-0.5479294875108613,39],[19,0.2115274875604497,40],[17,-0.6647127516729407,41],[20,0.8770544189577038,42],[20,0.5618772800466858,43],[20,1.460970739768099,44],[20,0.8770544189577038,45],[20,0.8770544189577038,46],[16,0.2291138143480588,47],[20,0.2291138143480588,48],[20,0.1123305501859794,49],[20,0.8770544189577038,50],[20,0.8770544189577038,51],[16,0.9938376831197832,52],[16,-1.960593960892228,53],[12,-2.305325483127794,54],[16,0.1123305501859794,55],[20,-0.5479294875108613,56],[16,-0.3783872429859548,57],[20,0.380718355535098,58],[20,0.04795488983647097,59],[20,0.9938376831197832,60],[17,0.8770544189577038,61],[20,0.713481821233725,62],[19,0.2291138143480588,63],[14,-0.7691765827478203,64],[17,0.5442909532590767,65],[13,-0.2967766323990956,66],[20,0.1123305501859794,67],[18,-1.528633557819132,68],[20,0.4450940158846085,69],[16,-0.1212359781381773,70],[20,1.063831613719961,71],[20,0.8770544189577038,72],[20,0.2291138143480588,73],[16,-0.004452713976097957,74],[20,0.5442909532590767,75],[12,-0.1212359781381773,76],[17,-0.5356100544236616,77],[17,-1.230691369145465,78],[18,0.8946407457453128,79],[16,-1.096673154746037,80],[18,-0.2028465887250346,81],[20,-0.1504389849124656,82],[20,-1.131494431770996,83],[20,0.8946407457453128,84],[19,0.8770544189577038,85],[18,-0.5531963812112707,86],[14,-0.004452713976097957,87],[20,1.22740421144394,88],[14,-2.258184773015633,89],[19,0.5442909532590767,90],[17,0.5618772800466858,91],[17,1.011424009907392,92],[18,0.5618772800466858,93],[18,0.3163426951855896,94],[18,0.9938376831197832,95],[20,0.8770544189577038,96],[20,0.4799152929095683,97],[20,0.6610742174211561,98],[19,-0.431146223348782,99],[20,0.9938376831197832,100]],"fields":[{"min":11.0,"id":"fVariable","max":20.0,"label":"X Variable_1","format":{"numericPattern":"###"}},{"min":-3.502361131522872,"id":"fVariable1","max":1.460970739768099,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["TOTAL_Y"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":2.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}

Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_1
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 1.89882870
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

COMPUTE LNX1=LN(TOTAL_X1).
EXECUTE.
COMPUTE LNX2=LN(TOTAL_X2).
EXECUTE.
COMPUTE LNX3=LN(TOTAL_X3).
EXECUTE.
COMPUTE LNY=LN(TOTAL_Y).
EXECUTE.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT LNY
  /METHOD=ENTER LNX1 LNX2 LNX3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 LNX3, LNX1, LNX2b . Enter
a. Dependent Variable: LNY
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .694a .481 .465 .11831
a. Predictors: (Constant), LNX3, LNX1, LNX2
b. Dependent Variable: LNY
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 1.247 3 .416 29.688 .000b
Residual 1.344 96 .014    
Total 2.590 99      
a. Dependent Variable: LNY  
b. Predictors: (Constant), LNX3, LNX1, LNX2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) .179 .291   .616 .540
LNX1 .733 .110 .530 6.641 .000
LNX2 -.120 .060 -.184 -2.013 .047
LNX3 .412 .076 .471 5.446 .000
a. Dependent Variable: LNY  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 2.4320 3.0043 2.8614 .11221 100
Residual -.37892 .25035 .00000 .11650 100
Std. Predicted Value -3.827 1.273 .000 1.000 100
Std. Residual -3.203 2.116 .000 .985 100
a. Dependent Variable: LNY
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_2
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation .11650023
Most Extreme Differences Absolute .153
Positive .061
Negative -.153
Test Statistic .153
Asymp. Sig. (2-tailed) .000c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE ZRESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=ZRE_1
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Standardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation .98473193
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_1
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 1.89882870
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

COMPUTE X1=TOTAL_X1-0.45*RES_1.
EXECUTE.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER X1
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 X1b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .104a .011 .001 2.602
a. Predictors: (Constant), X1
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 7.250 1 7.250 1.070 .303b
Residual 663.750 98 6.773    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), X1  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 6 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) 15.473 2.169   7.135 .000
X1 .159 .154 .104 1.035 .303
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 16.87 18.26 17.70 .271 100
Residual -7.049 2.849 .000 2.589 100
Std. Predicted Value -3.071 2.061 .000 1.000 100
Std. Residual -2.709 1.095 .000 .995 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_2
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 2.58931285
Most Extreme Differences Absolute .213
Positive .136
Negative -.213
Test Statistic .213
Asymp. Sig. (2-tailed) .000c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=TOTAL_X1 TOTAL_X2 TOTAL_X3 TOTAL_Y
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 6 columns and 13 rows
  TOTAL_X1 TOTAL_X2 TOTAL_X3 TOTAL_Y
N 100 100 100 100
Normal Parametersa,b Mean 13.97 12.82 13.19 17.70
Std. Deviation 1.466 2.341 2.102 2.603
Most Extreme Differences Absolute .319 .193 .225 .232
Positive .241 .176 .195 .188
Negative -.319 -.193 -.225 -.232
Test Statistic .319 .193 .225 .232
Asymp. Sig. (2-tailed) .000c .000c .000c .000c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA CHANGE
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 2 levels of column headers and 1 levels of row headers, table with 10 columns and 6 rows
Model R R Square Adjusted R Square Std. Error of the Estimate Change Statistics
R Square Change F Change df1 df2 Sig. F Change
1 .684a .468 .451 1.928 .468 28.154 3 96 .000
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_1
  /MISSING ANALYSIS.

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 13 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 1.89882870
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

NPAR TESTS
  /K-S(NORMAL)=RES_1
  /MISSING ANALYSIS
  /METHOD=EXACT TIMER(5).

NPar Tests
NPar Tests - One-Sample Kolmogorov-Smirnov Test - May 13, 2024
One-Sample Kolmogorov-Smirnov TestOne-Sample Kolmogorov-Smirnov Test, table, 1 levels of column headers and 2 levels of row headers, table with 3 columns and 15 rows
  Unstandardized Residual
N 100
Normal Parametersa,b Mean .0000000
Std. Deviation 1.89882870
Most Extreme Differences Absolute .125
Positive .049
Negative -.125
Test Statistic .125
Asymp. Sig. (2-tailed) .001c
Exact Sig. (2-tailed) .081
Point Probability .000
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 9 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -.238 2.032   -.117 .907    
TOTAL_X1 .915 .145 .516 6.298 .000 .827 1.210
TOTAL_X2 -.208 .104 -.187 -2.009 .047 .639 1.565
TOTAL_X3 .593 .108 .479 5.506 .000 .734 1.363
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Collinearity Diagnostics - May 13, 2024
Collinearity DiagnosticsaCollinearity Diagnostics, table, 2 levels of column headers and 2 levels of row headers, table with 8 columns and 8 rows
Model Dimension Eigenvalue Condition Index Variance Proportions
(Constant) TOTAL_X1 TOTAL_X2 TOTAL_X3
1 1 3.962 1.000 .00 .00 .00 .00
2 .019 14.509 .13 .09 .48 .09
3 .014 16.862 .00 .05 .41 .82
4 .005 28.327 .87 .85 .10 .09
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
  /SAVE RESID.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummarybModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 5 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
b. Dependent Variable: TOTAL_Y
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Regression
Regression - Residuals Statistics - May 13, 2024
Residuals StatisticsaResiduals Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 6 columns and 7 rows
  Minimum Maximum Mean Std. Deviation N
Predicted Value 11.46 20.30 17.70 1.781 100
Residual -5.484 4.315 .000 1.899 100
Std. Predicted Value -3.502 1.461 .000 1.000 100
Std. Residual -2.844 2.238 .000 .985 100
a. Dependent Variable: TOTAL_Y
Log
Log - Log - May 13, 2024

COMPUTE RES2=ABS_RES(RES_1).
EXECUTE.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT RES2
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: RES2
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummaryModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 4 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .247a .061 .032 1.12474
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 7.911 3 2.637 2.085 .107b
Residual 121.445 96 1.265    
Total 129.356 99      
a. Dependent Variable: RES2  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) 3.646 1.185   3.076 .003
TOTAL_X1 -.096 .085 -.123 -1.134 .260
TOTAL_X2 .081 .060 .165 1.334 .185
TOTAL_X3 -.139 .063 -.255 -2.207 .030
a. Dependent Variable: RES2  
Log
Log - Log - May 13, 2024

COMPUTE ABS=ABS(RES2).
EXECUTE.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT ABS
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: ABS
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummaryModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 4 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .247a .061 .032 1.12474
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 7.911 3 2.637 2.085 .107b
Residual 121.445 96 1.265    
Total 129.356 99      
a. Dependent Variable: ABS  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) 3.646 1.185   3.076 .003
TOTAL_X1 -.096 .085 -.123 -1.134 .260
TOTAL_X2 .081 .060 .165 1.334 .185
TOTAL_X3 -.139 .063 -.255 -2.207 .030
a. Dependent Variable: ABS  
Log
Log - Log - May 13, 2024

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT TOTAL_Y
  /METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.

Regression
Regression - Variables Entered/Removed - May 13, 2024
Variables Entered/RemovedaVariables Entered/Removed, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 5 rows
Model Variables Entered Variables Removed Method
1 TOTAL_X3, TOTAL_X1, TOTAL_X2b . Enter
a. Dependent Variable: TOTAL_Y
b. All requested variables entered.
Regression
Regression - Model Summary - May 13, 2024
Model SummaryModel Summary, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 4 rows
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .684a .468 .451 1.928
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2
Regression
Regression - ANOVA - May 13, 2024
ANOVAaANOVA, table, 1 levels of column headers and 2 levels of row headers, table with 7 columns and 7 rows
Model Sum of Squares df Mean Square F Sig.
1 Regression 314.051 3 104.684 28.154 .000b
Residual 356.949 96 3.718    
Total 671.000 99      
a. Dependent Variable: TOTAL_Y  
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2  
Regression
Regression - Coefficients - May 13, 2024
CoefficientsaCoefficients, table, 2 levels of column headers and 2 levels of row headers, table with 7 columns and 8 rows
Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) -.238 2.032   -.117 .907
TOTAL_X1 .915 .145 .516 6.298 .000
TOTAL_X2 -.208 .104 -.187 -2.009 .047
TOTAL_X3 .593 .108 .479 5.506 .000
a. Dependent Variable: TOTAL_Y  
Log
Log - Log - May 13, 2024

NEW FILE.
DATASET NAME DataSet1 WINDOW=FRONT.
DATASET ACTIVATE DataSet0.
DATASET CLOSE DataSet1.

IBM SPSS Web Report
X

Save
X New Name


What to Save
Save the entire document
Only save the current object




Server Connection
X
Saved Server Connections




Status





Add a chart



Pivot and Sort
Chart Size

Lock aspect ratio
Background
Line and Borders

Text Format


Number Format

0.00
Axis Options

Display Axis Title
Display Ticks