IBM SPSS Web Report - Output3.spv Contents
Previous
Next
Help
|
|
Controls disabled by the system
|
CORRELATIONS
/VARIABLES=X1.1 X1.2 X1.3 TOTAL_X1 X2.1 X2.2 X2.3 TOTAL_X2 X3.1 X3.2 X3.3 TOTAL_X3 Y1 Y2 Y3 Y4
TOTAL_Y
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.
X1.1 | X1.2 | X1.3 | TOTAL_X1 | X2.1 | X2.2 | X2.3 | TOTAL_X2 | X3.1 | X3.2 | X3.3 | TOTAL_X3 | Y1 | Y2 | Y3 | Y4 | TOTAL_Y | |||
X1.1 | Pearson Correlation | 1 | .456** | .523** | .805** | .384** | .309** | .319** | .375** | .129 | .070 | -.036 | .063 | .188 | .503** | .384** | .287** | .416** | |
Sig. (2-tailed) | .000 | .000 | .000 | .000 | .002 | .001 | .000 | .200 | .489 | .719 | .534 | .061 | .000 | .000 | .004 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X1.2 | Pearson Correlation | .456** | 1 | .481** | .831** | .285** | .186 | .173 | .239* | .291** | .262** | .219* | .298** | .488** | .456** | .439** | .422** | .561** | |
Sig. (2-tailed) | .000 | .000 | .000 | .004 | .065 | .085 | .017 | .003 | .008 | .028 | .003 | .000 | .000 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X1.3 | Pearson Correlation | .523** | .481** | 1 | .791** | .470** | .348** | .338** | .429** | .196 | .112 | .109 | .162 | .317** | .233* | .265** | .174 | .311** | |
Sig. (2-tailed) | .000 | .000 | .000 | .000 | .000 | .001 | .000 | .051 | .265 | .281 | .108 | .001 | .019 | .008 | .083 | .002 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
TOTAL_X1 | Pearson Correlation | .805** | .831** | .791** | 1 | .456** | .335** | .330** | .416** | .260** | .193 | .128 | .225* | .420** | .503** | .458** | .379** | .545** | |
Sig. (2-tailed) | .000 | .000 | .000 | .000 | .001 | .001 | .000 | .009 | .054 | .203 | .025 | .000 | .000 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X2.1 | Pearson Correlation | .384** | .285** | .470** | .456** | 1 | .699** | .656** | .874** | .436** | .337** | .244* | .393** | .274** | .298** | .259** | .126 | .299** | |
Sig. (2-tailed) | .000 | .004 | .000 | .000 | .000 | .000 | .000 | .000 | .001 | .015 | .000 | .006 | .003 | .009 | .211 | .003 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X2.2 | Pearson Correlation | .309** | .186 | .348** | .335** | .699** | 1 | .803** | .922** | .579** | .401** | .315** | .501** | .173 | .164 | .127 | .049 | .161 | |
Sig. (2-tailed) | .002 | .065 | .000 | .001 | .000 | .000 | .000 | .000 | .000 | .001 | .000 | .085 | .104 | .208 | .627 | .110 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X2.3 | Pearson Correlation | .319** | .173 | .338** | .330** | .656** | .803** | 1 | .908** | .610** | .402** | .290** | .504** | .283** | .280** | .237* | .089 | .278** | |
Sig. (2-tailed) | .001 | .085 | .001 | .001 | .000 | .000 | .000 | .000 | .000 | .003 | .000 | .004 | .005 | .017 | .377 | .005 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
TOTAL_X2 | Pearson Correlation | .375** | .239* | .429** | .416** | .874** | .922** | .908** | 1 | .600** | .421** | .313** | .516** | .271** | .276** | .232* | .099 | .274** | |
Sig. (2-tailed) | .000 | .017 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .002 | .000 | .006 | .005 | .020 | .329 | .006 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X3.1 | Pearson Correlation | .129 | .291** | .196 | .260** | .436** | .579** | .610** | .600** | 1 | .677** | .447** | .822** | .395** | .283** | .355** | .194 | .386** | |
Sig. (2-tailed) | .200 | .003 | .051 | .009 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .004 | .000 | .053 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X3.2 | Pearson Correlation | .070 | .262** | .112 | .193 | .337** | .401** | .402** | .421** | .677** | 1 | .736** | .929** | .509** | .313** | .343** | .220* | .437** | |
Sig. (2-tailed) | .489 | .008 | .265 | .054 | .001 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .002 | .000 | .028 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
X3.3 | Pearson Correlation | -.036 | .219* | .109 | .128 | .244* | .315** | .290** | .313** | .447** | .736** | 1 | .842** | .493** | .387** | .362** | .245* | .466** | |
Sig. (2-tailed) | .719 | .028 | .281 | .203 | .015 | .001 | .003 | .002 | .000 | .000 | .000 | .000 | .000 | .000 | .014 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
TOTAL_X3 | Pearson Correlation | .063 | .298** | .162 | .225* | .393** | .501** | .504** | .516** | .822** | .929** | .842** | 1 | .539** | .380** | .409** | .255* | .498** | |
Sig. (2-tailed) | .534 | .003 | .108 | .025 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .011 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Y1 | Pearson Correlation | .188 | .488** | .317** | .420** | .274** | .173 | .283** | .271** | .395** | .509** | .493** | .539** | 1 | .569** | .517** | .298** | .756** | |
Sig. (2-tailed) | .061 | .000 | .001 | .000 | .006 | .085 | .004 | .006 | .000 | .000 | .000 | .000 | .000 | .000 | .003 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Y2 | Pearson Correlation | .503** | .456** | .233* | .503** | .298** | .164 | .280** | .276** | .283** | .313** | .387** | .380** | .569** | 1 | .690** | .509** | .851** | |
Sig. (2-tailed) | .000 | .000 | .019 | .000 | .003 | .104 | .005 | .005 | .004 | .002 | .000 | .000 | .000 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Y3 | Pearson Correlation | .384** | .439** | .265** | .458** | .259** | .127 | .237* | .232* | .355** | .343** | .362** | .409** | .517** | .690** | 1 | .619** | .876** | |
Sig. (2-tailed) | .000 | .000 | .008 | .000 | .009 | .208 | .017 | .020 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Y4 | Pearson Correlation | .287** | .422** | .174 | .379** | .126 | .049 | .089 | .099 | .194 | .220* | .245* | .255* | .298** | .509** | .619** | 1 | .741** | |
Sig. (2-tailed) | .004 | .000 | .083 | .000 | .211 | .627 | .377 | .329 | .053 | .028 | .014 | .011 | .003 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
TOTAL_Y | Pearson Correlation | .416** | .561** | .311** | .545** | .299** | .161 | .278** | .274** | .386** | .437** | .466** | .498** | .756** | .851** | .876** | .741** | 1 | |
Sig. (2-tailed) | .000 | .000 | .002 | .000 | .003 | .110 | .005 | .006 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | |||
N | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
**. Correlation is significant at the 0.01 level (2-tailed). | |||||||||||||||||||
*. Correlation is significant at the 0.05 level (2-tailed). | |||||||||||||||||||
RELIABILITY
/VARIABLES=X1.1 X1.2 X1.3 X2.1 X2.2 X2.3 X3.1 X3.2 X3.3 Y1 Y2 Y3 Y4
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/SUMMARY=TOTAL.
N | % | |||
Cases | Valid | 100 | 100.0 | |
Excludeda | 0 | .0 | ||
Total | 100 | 100.0 | ||
a. Listwise deletion based on all variables in the procedure. | ||||
Cronbach's Alpha | N of Items |
.874 | 13 |
Scale Mean if Item Deleted | Scale Variance if Item Deleted | Corrected Item-Total Correlation | Cronbach's Alpha if Item Deleted | |
X1.1 | 52.93 | 37.581 | .437 | .870 |
X1.2 | 53.13 | 36.175 | .526 | .866 |
X1.3 | 53.01 | 37.970 | .454 | .870 |
X2.1 | 53.40 | 34.222 | .586 | .862 |
X2.2 | 53.35 | 34.876 | .556 | .864 |
X2.3 | 53.47 | 34.231 | .603 | .861 |
X3.1 | 53.31 | 34.337 | .630 | .860 |
X3.2 | 53.27 | 34.825 | .605 | .861 |
X3.3 | 53.27 | 35.391 | .519 | .866 |
Y1 | 53.37 | 34.195 | .593 | .862 |
Y2 | 53.20 | 35.111 | .616 | .861 |
Y3 | 53.25 | 34.553 | .600 | .861 |
Y4 | 53.20 | 36.687 | .409 | .872 |
REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SCATTERPLOT=(*SRESID ,*ZPRED)
/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
/SAVE RESID.
Mean | Std. Deviation | N | |
TOTAL_Y | 17.70 | 2.603 | 100 |
TOTAL_X1 | 13.97 | 1.466 | 100 |
TOTAL_X2 | 12.82 | 2.341 | 100 |
TOTAL_X3 | 13.19 | 2.102 | 100 |
TOTAL_Y | TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | ||
Pearson Correlation | TOTAL_Y | 1.000 | .545 | .274 | .498 |
TOTAL_X1 | .545 | 1.000 | .416 | .225 | |
TOTAL_X2 | .274 | .416 | 1.000 | .516 | |
TOTAL_X3 | .498 | .225 | .516 | 1.000 | |
Sig. (1-tailed) | TOTAL_Y | . | .000 | .003 | .000 |
TOTAL_X1 | .000 | . | .000 | .012 | |
TOTAL_X2 | .003 | .000 | . | .000 | |
TOTAL_X3 | .000 | .012 | .000 | . | |
N | TOTAL_Y | 100 | 100 | 100 | 100 |
TOTAL_X1 | 100 | 100 | 100 | 100 | |
TOTAL_X2 | 100 | 100 | 100 | 100 | |
TOTAL_X3 | 100 | 100 | 100 | 100 | |
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson |
1 | .684a | .468 | .451 | 1.928 | 1.869 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||
b. Dependent Variable: TOTAL_Y | |||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||||
B | Std. Error | Beta | Tolerance | VIF | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | .827 | 1.210 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | .639 | 1.565 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | .734 | 1.363 | ||
a. Dependent Variable: TOTAL_Y | |||||||||
Model | Dimension | Eigenvalue | Condition Index | Variance Proportions | ||||
(Constant) | TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | |||||
1 | 1 | 3.962 | 1.000 | .00 | .00 | .00 | .00 | |
2 | .019 | 14.509 | .13 | .09 | .48 | .09 | ||
3 | .014 | 16.862 | .00 | .05 | .41 | .82 | ||
4 | .005 | 28.327 | .87 | .85 | .10 | .09 | ||
a. Dependent Variable: TOTAL_Y | ||||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Standard Error of Predicted Value | .208 | .917 | .359 | .140 | 100 |
Adjusted Predicted Value | 11.37 | 20.33 | 17.71 | 1.769 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
Stud. Residual | -2.895 | 2.353 | -.002 | 1.007 | 100 |
Deleted Residual | -5.684 | 4.795 | -.008 | 1.985 | 100 |
Stud. Deleted Residual | -3.015 | 2.411 | -.004 | 1.019 | 100 |
Mahal. Distance | .167 | 21.399 | 2.970 | 3.867 | 100 |
Cook's Distance | .000 | .162 | .012 | .025 | 100 |
Centered Leverage Value | .002 | .216 | .030 | .039 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[0.8770544189577038,0.3869399631709206,1],[0.1995594310235102,-1.082087062703034,2],[-1.067118771421487,-2.54485696246993,3],[-2.486835784189643,-1.338679257285007,4],[-0.9798898905839587,0.02381717302460286,5],[0.363132028747489,0.8671530720424083,6],[-0.03400709730064654,-1.387660011918009,7],[-3.502361131522872,0.3015179109175676,8],[0.6610742174211561,0.5868007015869607,9],[0.8770544189577038,0.3869399631709206,10],[-1.546219884606743,0.5610663746921375,11],[0.5966985570716477,-1.970531943853446,12],[0.04795488983647097,0.1119415213072168,13],[0.8770544189577038,0.3869399631709206,14],[-1.663003148768822,-1.472302122314143,15],[-0.7987309660723709,-0.1450591379218639,16],[-0.1856116384876858,-0.7154443926572276,17],[0.8770544189577038,0.3869399631709206,18],[-0.6647127516729407,-0.275701623878564,19],[0.8770544189577038,0.3869399631709206,20],[0.8770544189577038,0.3869399631709206,21],[-2.795311760264127,-0.4077915000842367,22],[-1.411850293657053,-1.682184832388344,23],[0.8770544189577038,-1.186198818039964,24],[-1.546219884606743,-0.5036431470491598,25],[-0.7343553057228605,-0.7315546014416101,26],[0.8770544189577038,0.3869399631709206,27],[0.4799152929095683,-0.8136631078624421,28],[-1.119526375234057,2.353180516902576,29],[-1.096673154746037,1.715990257409124,30],[0.1471518272109413,0.54185613698178,31],[-0.6351583683483921,-0.3003024575870214,32],[-0.1332040346751168,1.328494626594247,33],[0.8770544189577038,0.3869399631709206,34],[0.2291138143480588,-1.105573979903579,35],[-0.08079643086254591,1.310019919976332,36],[1.22740421144394,0.06012083719053045,37],[1.22740421144394,-0.4677118286874457,38],[-0.5479294875108613,0.1465938857868129,39],[0.2115274875604497,0.4847778408238074,40],[-0.6647127516729407,0.2585035454889179,41],[0.8770544189577038,0.3869399631709206,42],[0.5618772800466858,0.6806732620561101,43],[1.460970739768099,-0.1626341209203926,44],[0.8770544189577038,0.3869399631709206,45],[0.8770544189577038,0.3869399631709206,46],[0.2291138143480588,-1.105573979903579,47],[0.2291138143480588,0.9922208573578843,48],[0.1123305501859794,1.100494704923887,49],[0.8770544189577038,0.3869399631709206,50],[0.8770544189577038,0.3869399631709206,51],[0.9938376831197832,-1.81824025507866,52],[-1.960593960892228,0.9586573119139821,53],[-2.305325483127794,-0.882740585246279,54],[0.1123305501859794,-0.995754671433051,55],[-0.5479294875108613,1.740563640952571,56],[-0.3783872429859548,-0.5876135872567033,57],[0.380718355535098,0.8479154771075558,58],[0.04795488983647097,1.155253610282416,59],[0.9938376831197832,0.2776539951124444,60],[0.8770544189577038,-1.186198818039964,61],[0.713481821233725,0.540967197429027,62],[0.2291138143480588,0.4677721480425185,63],[-0.7691765827478203,-1.250175434654229,64],[0.5442909532590767,-0.8745974107663264,65],[-0.2967766323990956,-2.235181588107385,66],[0.1123305501859794,1.100494704923887,67],[-1.528633557819132,1.595077839503353,68],[0.4450940158846085,0.7879158138045269,69],[-0.1212359781381773,-0.7835353030486181,70],[1.063831613719961,0.2193882656497329,71],[0.8770544189577038,0.3869399631709206,72],[0.2291138143480588,0.9922208573578843,73],[-0.004452713976097957,-0.8887149541843185,74],[0.5442909532590767,0.6970787966922278,75],[-0.1212359781381773,-2.895391169418792,76],[-0.5356100544236616,0.1364841158352485,77],[-1.230691369145465,0.7880315831549031,78],[0.8946407457453128,-0.6790626515845035,79],[-1.096673154746037,0.1335850119279103,80],[-0.2028465887250346,0.3525508530930708,81],[-0.1504389849124656,1.375191868493082,82],[-1.131494431770996,2.265890483557931,83],[0.8946407457453128,0.3709621929770914,84],[0.8770544189577038,-0.137439630566041,85],[-0.5531963812112707,0.683608495410251,86],[-0.004452713976097957,-1.93916236830854,87],[1.22740421144394,0.06012083719053045,88],[-2.258184773015633,0.1880597442347761,89],[0.5442909532590767,0.1731867275393764,90],[0.5618772800466858,-0.8910124302035364,91],[1.011424009907392,-1.322065828447673,92],[0.5618772800466858,-0.3671171994503208,93],[0.3163426951855896,-0.139401063653788,94],[0.9938376831197832,-0.770293129983108,95],[0.8770544189577038,0.3869399631709206,96],[0.4799152929095683,0.7563421907700929,97],[0.6610742174211561,0.5868007015869607,98],[-0.431146223348782,1.096149218341028,99],[0.9938376831197832,0.2776539951124444,100]],"fields":[{"min":-3.502361131522872,"id":"fVariable","max":1.460970739768099,"label":"X Variable_1"},{"min":-2.895391169418792,"id":"fVariable1","max":2.353180516902576,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Studentized Residual"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}
NPAR TESTS
/K-S(NORMAL)=RES_1
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 1.89882870 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
DESCRIPTIVES VARIABLES=TOTAL_X1 TOTAL_X2 TOTAL_X3 TOTAL_Y
/STATISTICS=MEAN STDDEV MIN MAX.
N | Minimum | Maximum | Mean | Std. Deviation | |
TOTAL_X1 | 100 | 8 | 15 | 13.97 | 1.466 |
TOTAL_X2 | 100 | 3 | 15 | 12.82 | 2.341 |
TOTAL_X3 | 100 | 6 | 15 | 13.19 | 2.102 |
TOTAL_Y | 100 | 11 | 20 | 17.70 | 2.603 |
Valid N (listwise) | 100 | ||||
EXAMINE VARIABLES=TOTAL_X1
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
Cases | ||||||
Valid | Missing | Total | ||||
N | Percent | N | Percent | N | Percent | |
TOTAL_X1 | 100 | 100.0% | 0 | 0.0% | 100 | 100.0% |
Statistic | Std. Error | |||
TOTAL_X1 | Mean | 13.97 | .147 | |
95% Confidence Interval for Mean | Lower Bound | 13.68 | ||
Upper Bound | 14.26 | |||
5% Trimmed Mean | 14.12 | |||
Median | 15.00 | |||
Variance | 2.151 | |||
Std. Deviation | 1.466 | |||
Minimum | 8 | |||
Maximum | 15 | |||
Range | 7 | |||
Interquartile Range | 2 | |||
Skewness | -1.575 | .241 | ||
Kurtosis | 2.638 | .478 | ||
Case Number | Value | |||||
TOTAL_X1 | Highest | 1 | 1 | 15 | ||
2 | 9 | 15 | ||||
3 | 10 | 15 | ||||
4 | 14 | 15 | ||||
5 | 18 | 15a | ||||
Lowest | 1 | 4 | 8 | |||
2 | 8 | 9 | ||||
3 | 54 | 10 | ||||
4 | 99 | 12 | ||||
5 | 89 | 12b | ||||
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes. | ||||||
b. Only a partial list of cases with the value 12 are shown in the table of lower extremes. | ||||||
TOTAL_X1 Stem-and-Leaf Plot
Frequency Stem & Leaf
2.00 Extremes (=<9.0)
1.00 10 . 0
.00 10 .
.00 11 .
.00 11 .
18.00 12 . 000000000000000000
.00 12 .
8.00 13 . 00000000
.00 13 .
15.00 14 . 000000000000000
.00 14 .
56.00 15 . 00000000000000000000000000000000000000000000000000000000
Stem width: 1
Each leaf: 1 case(s)
EXAMINE VARIABLES=TOTAL_X2
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
Cases | ||||||
Valid | Missing | Total | ||||
N | Percent | N | Percent | N | Percent | |
TOTAL_X2 | 100 | 100.0% | 0 | 0.0% | 100 | 100.0% |
Statistic | Std. Error | |||
TOTAL_X2 | Mean | 12.82 | .234 | |
95% Confidence Interval for Mean | Lower Bound | 12.36 | ||
Upper Bound | 13.28 | |||
5% Trimmed Mean | 13.08 | |||
Median | 13.00 | |||
Variance | 5.482 | |||
Std. Deviation | 2.341 | |||
Minimum | 3 | |||
Maximum | 15 | |||
Range | 12 | |||
Interquartile Range | 3 | |||
Skewness | -1.696 | .241 | ||
Kurtosis | 4.062 | .478 | ||
Case Number | Value | |||||
TOTAL_X2 | Highest | 1 | 1 | 15 | ||
2 | 6 | 15 | ||||
3 | 10 | 15 | ||||
4 | 14 | 15 | ||||
5 | 15 | 15a | ||||
Lowest | 1 | 89 | 3 | |||
2 | 57 | 4 | ||||
3 | 54 | 6 | ||||
4 | 82 | 8 | ||||
5 | 71 | 9b | ||||
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes. | ||||||
b. Only a partial list of cases with the value 9 are shown in the table of lower extremes. | ||||||
TOTAL_X2 Stem-and-Leaf Plot
Frequency Stem & Leaf
3.00 Extremes (=<6.0)
1.00 8 . 0
.00 8 .
4.00 9 . 0000
.00 9 .
6.00 10 . 000000
.00 10 .
3.00 11 . 000
.00 11 .
24.00 12 . 000000000000000000000000
.00 12 .
12.00 13 . 000000000000
.00 13 .
17.00 14 . 00000000000000000
.00 14 .
30.00 15 . 000000000000000000000000000000
Stem width: 1
Each leaf: 1 case(s)
EXAMINE VARIABLES=TOTAL_X3
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
Cases | ||||||
Valid | Missing | Total | ||||
N | Percent | N | Percent | N | Percent | |
TOTAL_X3 | 100 | 100.0% | 0 | 0.0% | 100 | 100.0% |
Statistic | Std. Error | |||
TOTAL_X3 | Mean | 13.19 | .210 | |
95% Confidence Interval for Mean | Lower Bound | 12.77 | ||
Upper Bound | 13.61 | |||
5% Trimmed Mean | 13.39 | |||
Median | 14.00 | |||
Variance | 4.418 | |||
Std. Deviation | 2.102 | |||
Minimum | 6 | |||
Maximum | 15 | |||
Range | 9 | |||
Interquartile Range | 3 | |||
Skewness | -1.222 | .241 | ||
Kurtosis | 1.311 | .478 | ||
Case Number | Value | |||||
TOTAL_X3 | Highest | 1 | 1 | 15 | ||
2 | 2 | 15 | ||||
3 | 4 | 15 | ||||
4 | 6 | 15 | ||||
5 | 7 | 15a | ||||
Lowest | 1 | 89 | 6 | |||
2 | 22 | 6 | ||||
3 | 77 | 9 | ||||
4 | 64 | 9 | ||||
5 | 53 | 9b | ||||
a. Only a partial list of cases with the value 15 are shown in the table of upper extremes. | ||||||
b. Only a partial list of cases with the value 9 are shown in the table of lower extremes. | ||||||
TOTAL_X3 Stem-and-Leaf Plot
Frequency Stem & Leaf
2.00 Extremes (=<6.0)
5.00 9 . 00000
.00 9 .
5.00 10 . 00000
.00 10 .
5.00 11 . 00000
.00 11 .
18.00 12 . 000000000000000000
.00 12 .
11.00 13 . 00000000000
.00 13 .
12.00 14 . 000000000000
.00 14 .
42.00 15 . 000000000000000000000000000000000000000000
Stem width: 1
Each leaf: 1 case(s)
EXAMINE VARIABLES=TOTAL_Y
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
Cases | ||||||
Valid | Missing | Total | ||||
N | Percent | N | Percent | N | Percent | |
TOTAL_Y | 100 | 100.0% | 0 | 0.0% | 100 | 100.0% |
Statistic | Std. Error | |||
TOTAL_Y | Mean | 17.70 | .260 | |
95% Confidence Interval for Mean | Lower Bound | 17.18 | ||
Upper Bound | 18.22 | |||
5% Trimmed Mean | 17.91 | |||
Median | 18.50 | |||
Variance | 6.778 | |||
Std. Deviation | 2.603 | |||
Minimum | 11 | |||
Maximum | 20 | |||
Range | 9 | |||
Interquartile Range | 4 | |||
Skewness | -.953 | .241 | ||
Kurtosis | -.034 | .478 | ||
Case Number | Value | |||||
TOTAL_Y | Highest | 1 | 1 | 20 | ||
2 | 6 | 20 | ||||
3 | 9 | 20 | ||||
4 | 10 | 20 | ||||
5 | 14 | 20a | ||||
Lowest | 1 | 4 | 11 | |||
2 | 3 | 11 | ||||
3 | 76 | 12 | ||||
4 | 54 | 12 | ||||
5 | 23 | 12b | ||||
a. Only a partial list of cases with the value 20 are shown in the table of upper extremes. | ||||||
b. Only a partial list of cases with the value 12 are shown in the table of lower extremes. | ||||||
TOTAL_Y Stem-and-Leaf Plot
Frequency Stem & Leaf
2.00 11 . 00
.00 11 .
6.00 12 . 000000
.00 12 .
1.00 13 . 0
.00 13 .
4.00 14 . 0000
.00 14 .
3.00 15 . 000
.00 15 .
16.00 16 . 0000000000000000
.00 16 .
10.00 17 . 0000000000
.00 17 .
8.00 18 . 00000000
.00 18 .
8.00 19 . 00000000
.00 19 .
42.00 20 . 000000000000000000000000000000000000000000
Stem width: 1
Each leaf: 1 case(s)
REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SCATTERPLOT=(*SRESID ,*ZPRED) (*ZPRED ,TOTAL_Y)
/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID)
/SAVE RESID.
Mean | Std. Deviation | N | |
TOTAL_Y | 17.70 | 2.603 | 100 |
TOTAL_X1 | 13.97 | 1.466 | 100 |
TOTAL_X2 | 12.82 | 2.341 | 100 |
TOTAL_X3 | 13.19 | 2.102 | 100 |
TOTAL_Y | TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | ||
Pearson Correlation | TOTAL_Y | 1.000 | .545 | .274 | .498 |
TOTAL_X1 | .545 | 1.000 | .416 | .225 | |
TOTAL_X2 | .274 | .416 | 1.000 | .516 | |
TOTAL_X3 | .498 | .225 | .516 | 1.000 | |
Sig. (1-tailed) | TOTAL_Y | . | .000 | .003 | .000 |
TOTAL_X1 | .000 | . | .000 | .012 | |
TOTAL_X2 | .003 | .000 | . | .000 | |
TOTAL_X3 | .000 | .012 | .000 | . | |
N | TOTAL_Y | 100 | 100 | 100 | 100 |
TOTAL_X1 | 100 | 100 | 100 | 100 | |
TOTAL_X2 | 100 | 100 | 100 | 100 | |
TOTAL_X3 | 100 | 100 | 100 | 100 | |
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson |
1 | .684a | .468 | .451 | 1.928 | 1.869 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||
b. Dependent Variable: TOTAL_Y | |||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||||
B | Std. Error | Beta | Tolerance | VIF | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | .827 | 1.210 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | .639 | 1.565 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | .734 | 1.363 | ||
a. Dependent Variable: TOTAL_Y | |||||||||
Model | Dimension | Eigenvalue | Condition Index | Variance Proportions | ||||
(Constant) | TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | |||||
1 | 1 | 3.962 | 1.000 | .00 | .00 | .00 | .00 | |
2 | .019 | 14.509 | .13 | .09 | .48 | .09 | ||
3 | .014 | 16.862 | .00 | .05 | .41 | .82 | ||
4 | .005 | 28.327 | .87 | .85 | .10 | .09 | ||
a. Dependent Variable: TOTAL_Y | ||||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Standard Error of Predicted Value | .208 | .917 | .359 | .140 | 100 |
Adjusted Predicted Value | 11.37 | 20.33 | 17.71 | 1.769 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
Stud. Residual | -2.895 | 2.353 | -.002 | 1.007 | 100 |
Deleted Residual | -5.684 | 4.795 | -.008 | 1.985 | 100 |
Stud. Deleted Residual | -3.015 | 2.411 | -.004 | 1.019 | 100 |
Mahal. Distance | .167 | 21.399 | 2.970 | 3.867 | 100 |
Cook's Distance | .000 | .162 | .012 | .025 | 100 |
Centered Leverage Value | .002 | .216 | .030 | .039 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[0.8770544189577038,0.3869399631709206,1],[0.1995594310235102,-1.082087062703034,2],[-1.067118771421487,-2.54485696246993,3],[-2.486835784189643,-1.338679257285007,4],[-0.9798898905839587,0.02381717302460286,5],[0.363132028747489,0.8671530720424083,6],[-0.03400709730064654,-1.387660011918009,7],[-3.502361131522872,0.3015179109175676,8],[0.6610742174211561,0.5868007015869607,9],[0.8770544189577038,0.3869399631709206,10],[-1.546219884606743,0.5610663746921375,11],[0.5966985570716477,-1.970531943853446,12],[0.04795488983647097,0.1119415213072168,13],[0.8770544189577038,0.3869399631709206,14],[-1.663003148768822,-1.472302122314143,15],[-0.7987309660723709,-0.1450591379218639,16],[-0.1856116384876858,-0.7154443926572276,17],[0.8770544189577038,0.3869399631709206,18],[-0.6647127516729407,-0.275701623878564,19],[0.8770544189577038,0.3869399631709206,20],[0.8770544189577038,0.3869399631709206,21],[-2.795311760264127,-0.4077915000842367,22],[-1.411850293657053,-1.682184832388344,23],[0.8770544189577038,-1.186198818039964,24],[-1.546219884606743,-0.5036431470491598,25],[-0.7343553057228605,-0.7315546014416101,26],[0.8770544189577038,0.3869399631709206,27],[0.4799152929095683,-0.8136631078624421,28],[-1.119526375234057,2.353180516902576,29],[-1.096673154746037,1.715990257409124,30],[0.1471518272109413,0.54185613698178,31],[-0.6351583683483921,-0.3003024575870214,32],[-0.1332040346751168,1.328494626594247,33],[0.8770544189577038,0.3869399631709206,34],[0.2291138143480588,-1.105573979903579,35],[-0.08079643086254591,1.310019919976332,36],[1.22740421144394,0.06012083719053045,37],[1.22740421144394,-0.4677118286874457,38],[-0.5479294875108613,0.1465938857868129,39],[0.2115274875604497,0.4847778408238074,40],[-0.6647127516729407,0.2585035454889179,41],[0.8770544189577038,0.3869399631709206,42],[0.5618772800466858,0.6806732620561101,43],[1.460970739768099,-0.1626341209203926,44],[0.8770544189577038,0.3869399631709206,45],[0.8770544189577038,0.3869399631709206,46],[0.2291138143480588,-1.105573979903579,47],[0.2291138143480588,0.9922208573578843,48],[0.1123305501859794,1.100494704923887,49],[0.8770544189577038,0.3869399631709206,50],[0.8770544189577038,0.3869399631709206,51],[0.9938376831197832,-1.81824025507866,52],[-1.960593960892228,0.9586573119139821,53],[-2.305325483127794,-0.882740585246279,54],[0.1123305501859794,-0.995754671433051,55],[-0.5479294875108613,1.740563640952571,56],[-0.3783872429859548,-0.5876135872567033,57],[0.380718355535098,0.8479154771075558,58],[0.04795488983647097,1.155253610282416,59],[0.9938376831197832,0.2776539951124444,60],[0.8770544189577038,-1.186198818039964,61],[0.713481821233725,0.540967197429027,62],[0.2291138143480588,0.4677721480425185,63],[-0.7691765827478203,-1.250175434654229,64],[0.5442909532590767,-0.8745974107663264,65],[-0.2967766323990956,-2.235181588107385,66],[0.1123305501859794,1.100494704923887,67],[-1.528633557819132,1.595077839503353,68],[0.4450940158846085,0.7879158138045269,69],[-0.1212359781381773,-0.7835353030486181,70],[1.063831613719961,0.2193882656497329,71],[0.8770544189577038,0.3869399631709206,72],[0.2291138143480588,0.9922208573578843,73],[-0.004452713976097957,-0.8887149541843185,74],[0.5442909532590767,0.6970787966922278,75],[-0.1212359781381773,-2.895391169418792,76],[-0.5356100544236616,0.1364841158352485,77],[-1.230691369145465,0.7880315831549031,78],[0.8946407457453128,-0.6790626515845035,79],[-1.096673154746037,0.1335850119279103,80],[-0.2028465887250346,0.3525508530930708,81],[-0.1504389849124656,1.375191868493082,82],[-1.131494431770996,2.265890483557931,83],[0.8946407457453128,0.3709621929770914,84],[0.8770544189577038,-0.137439630566041,85],[-0.5531963812112707,0.683608495410251,86],[-0.004452713976097957,-1.93916236830854,87],[1.22740421144394,0.06012083719053045,88],[-2.258184773015633,0.1880597442347761,89],[0.5442909532590767,0.1731867275393764,90],[0.5618772800466858,-0.8910124302035364,91],[1.011424009907392,-1.322065828447673,92],[0.5618772800466858,-0.3671171994503208,93],[0.3163426951855896,-0.139401063653788,94],[0.9938376831197832,-0.770293129983108,95],[0.8770544189577038,0.3869399631709206,96],[0.4799152929095683,0.7563421907700929,97],[0.6610742174211561,0.5868007015869607,98],[-0.431146223348782,1.096149218341028,99],[0.9938376831197832,0.2776539951124444,100]],"fields":[{"min":-3.502361131522872,"id":"fVariable","max":1.460970739768099,"label":"X Variable_1"},{"min":-2.895391169418792,"id":"fVariable1","max":2.353180516902576,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Studentized Residual"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}
{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"data":[{"id":"dSource","rows":[[20,0.8770544189577038,1],[16,0.1995594310235102,2],[11,-1.067118771421487,3],[11,-2.486835784189643,4],[16,-0.9798898905839587,5],[20,0.363132028747489,6],[15,-0.03400709730064654,7],[12,-3.502361131522872,8],[20,0.6610742174211561,9],[20,0.8770544189577038,10],[16,-1.546219884606743,11],[15,0.5966985570716477,12],[18,0.04795488983647097,13],[20,0.8770544189577038,14],[12,-1.663003148768822,15],[16,-0.7987309660723709,16],[16,-0.1856116384876858,17],[20,0.8770544189577038,18],[16,-0.6647127516729407,19],[20,0.8770544189577038,20],[20,0.8770544189577038,21],[12,-2.795311760264127,22],[12,-1.411850293657053,23],[17,0.8770544189577038,24],[14,-1.546219884606743,25],[15,-0.7343553057228605,26],[20,0.8770544189577038,27],[17,0.4799152929095683,28],[20,-1.119526375234057,29],[19,-1.096673154746037,30],[19,0.1471518272109413,31],[16,-0.6351583683483921,32],[20,-0.1332040346751168,33],[20,0.8770544189577038,34],[16,0.2291138143480588,35],[20,-0.08079643086254591,36],[20,1.22740421144394,37],[19,1.22740421144394,38],[17,-0.5479294875108613,39],[19,0.2115274875604497,40],[17,-0.6647127516729407,41],[20,0.8770544189577038,42],[20,0.5618772800466858,43],[20,1.460970739768099,44],[20,0.8770544189577038,45],[20,0.8770544189577038,46],[16,0.2291138143480588,47],[20,0.2291138143480588,48],[20,0.1123305501859794,49],[20,0.8770544189577038,50],[20,0.8770544189577038,51],[16,0.9938376831197832,52],[16,-1.960593960892228,53],[12,-2.305325483127794,54],[16,0.1123305501859794,55],[20,-0.5479294875108613,56],[16,-0.3783872429859548,57],[20,0.380718355535098,58],[20,0.04795488983647097,59],[20,0.9938376831197832,60],[17,0.8770544189577038,61],[20,0.713481821233725,62],[19,0.2291138143480588,63],[14,-0.7691765827478203,64],[17,0.5442909532590767,65],[13,-0.2967766323990956,66],[20,0.1123305501859794,67],[18,-1.528633557819132,68],[20,0.4450940158846085,69],[16,-0.1212359781381773,70],[20,1.063831613719961,71],[20,0.8770544189577038,72],[20,0.2291138143480588,73],[16,-0.004452713976097957,74],[20,0.5442909532590767,75],[12,-0.1212359781381773,76],[17,-0.5356100544236616,77],[17,-1.230691369145465,78],[18,0.8946407457453128,79],[16,-1.096673154746037,80],[18,-0.2028465887250346,81],[20,-0.1504389849124656,82],[20,-1.131494431770996,83],[20,0.8946407457453128,84],[19,0.8770544189577038,85],[18,-0.5531963812112707,86],[14,-0.004452713976097957,87],[20,1.22740421144394,88],[14,-2.258184773015633,89],[19,0.5442909532590767,90],[17,0.5618772800466858,91],[17,1.011424009907392,92],[18,0.5618772800466858,93],[18,0.3163426951855896,94],[18,0.9938376831197832,95],[20,0.8770544189577038,96],[20,0.4799152929095683,97],[20,0.6610742174211561,98],[19,-0.431146223348782,99],[20,0.9938376831197832,100]],"fields":[{"min":11.0,"id":"fVariable","max":20.0,"label":"X Variable_1","format":{"numericPattern":"###"}},{"min":-3.502361131522872,"id":"fVariable1","max":1.460970739768099,"label":"Y Axis"},{"min":1.0,"id":"fVariable2","max":100.0,"label":"Case Number"}]}],"titles":[{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Scatterplot"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"},{"backgroundStyle":{"fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":0,"b":0,"r":0,"a":0.0}},"content":["Dependent Variable: TOTAL_Y"],"style":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"12pt"},"fill":{"g":100,"b":157,"r":0},"padding":3.0},"type":"title"}],"copyright":"(C) Copyright IBM Corp. 2011","version":"6.0","size":{"height":500.0,"width":625.0},"grammar":[{"elements":[{"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"style":{"symbol":"circle","fill":{"g":0,"b":0,"r":0,"a":0.0},"outline":{"g":100,"b":157,"r":0},"size":6.6666665},"data":{"$ref":"dSource"},"type":"point"}],"coordinates":{"style":{"fill":{"g":255,"b":255,"r":255},"outline":{"g":100,"b":157,"r":0}},"dimensions":[{"axis":[{"title":["Regression Standardized Predicted Value"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":1.0}],"padding":{"left":"5%","right":"5%"}}},{"axis":[{"title":["TOTAL_Y"],"lineStyle":{"stroke":{"width":0.6666667},"fill":{"g":100,"b":157,"r":0}},"tickStyle":{"font":{"weight":"normal","family":"sans-serif","size":"8pt"},"fill":{"g":100,"b":157,"r":0}},"titleStyle":{"font":{"weight":"bold","family":"'Helvetica Neue;Helvetica;Arial;SansSerif', sans-serif","size":"11pt"},"fill":{"g":100,"b":157,"r":0},"padding":6.0},"markStyle":{"stroke":{"width":1.3333334},"fill":{"g":100,"b":157,"r":0}}}],"scale":{"spans":[{"tickDelta":2.0}],"padding":{"left":"5%","right":"5%"}}}]}}]}
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
NPAR TESTS
/K-S(NORMAL)=RES_1
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 1.89882870 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
COMPUTE LNX1=LN(TOTAL_X1).
EXECUTE.
COMPUTE LNX2=LN(TOTAL_X2).
EXECUTE.
COMPUTE LNX3=LN(TOTAL_X3).
EXECUTE.
COMPUTE LNY=LN(TOTAL_Y).
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT LNY
/METHOD=ENTER LNX1 LNX2 LNX3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | LNX3, LNX1, LNX2b | . | Enter |
a. Dependent Variable: LNY | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .694a | .481 | .465 | .11831 |
a. Predictors: (Constant), LNX3, LNX1, LNX2 | ||||
b. Dependent Variable: LNY | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 1.247 | 3 | .416 | 29.688 | .000b | |
Residual | 1.344 | 96 | .014 | ||||
Total | 2.590 | 99 | |||||
a. Dependent Variable: LNY | |||||||
b. Predictors: (Constant), LNX3, LNX1, LNX2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | .179 | .291 | .616 | .540 | ||
LNX1 | .733 | .110 | .530 | 6.641 | .000 | ||
LNX2 | -.120 | .060 | -.184 | -2.013 | .047 | ||
LNX3 | .412 | .076 | .471 | 5.446 | .000 | ||
a. Dependent Variable: LNY | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 2.4320 | 3.0043 | 2.8614 | .11221 | 100 |
Residual | -.37892 | .25035 | .00000 | .11650 | 100 |
Std. Predicted Value | -3.827 | 1.273 | .000 | 1.000 | 100 |
Std. Residual | -3.203 | 2.116 | .000 | .985 | 100 |
a. Dependent Variable: LNY | |||||
NPAR TESTS
/K-S(NORMAL)=RES_2
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | .11650023 | |
Most Extreme Differences | Absolute | .153 |
Positive | .061 | |
Negative | -.153 | |
Test Statistic | .153 | |
Asymp. Sig. (2-tailed) | .000c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE ZRESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
NPAR TESTS
/K-S(NORMAL)=ZRE_1
/MISSING ANALYSIS.
Standardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | .98473193 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
NPAR TESTS
/K-S(NORMAL)=RES_1
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 1.89882870 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
COMPUTE X1=TOTAL_X1-0.45*RES_1.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER X1
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | X1b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .104a | .011 | .001 | 2.602 |
a. Predictors: (Constant), X1 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 7.250 | 1 | 7.250 | 1.070 | .303b | |
Residual | 663.750 | 98 | 6.773 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), X1 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | 15.473 | 2.169 | 7.135 | .000 | ||
X1 | .159 | .154 | .104 | 1.035 | .303 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 16.87 | 18.26 | 17.70 | .271 | 100 |
Residual | -7.049 | 2.849 | .000 | 2.589 | 100 |
Std. Predicted Value | -3.071 | 2.061 | .000 | 1.000 | 100 |
Std. Residual | -2.709 | 1.095 | .000 | .995 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
NPAR TESTS
/K-S(NORMAL)=RES_2
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 2.58931285 | |
Most Extreme Differences | Absolute | .213 |
Positive | .136 | |
Negative | -.213 | |
Test Statistic | .213 | |
Asymp. Sig. (2-tailed) | .000c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
NPAR TESTS
/K-S(NORMAL)=TOTAL_X1 TOTAL_X2 TOTAL_X3 TOTAL_Y
/MISSING ANALYSIS.
TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | TOTAL_Y | ||
N | 100 | 100 | 100 | 100 | |
Normal Parametersa,b | Mean | 13.97 | 12.82 | 13.19 | 17.70 |
Std. Deviation | 1.466 | 2.341 | 2.102 | 2.603 | |
Most Extreme Differences | Absolute | .319 | .193 | .225 | .232 |
Positive | .241 | .176 | .195 | .188 | |
Negative | -.319 | -.193 | -.225 | -.232 | |
Test Statistic | .319 | .193 | .225 | .232 | |
Asymp. Sig. (2-tailed) | .000c | .000c | .000c | .000c | |
a. Test distribution is Normal. | |||||
b. Calculated from data. | |||||
c. Lilliefors Significance Correction. | |||||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | .684a | .468 | .451 | 1.928 | .468 | 28.154 | 3 | 96 | .000 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||||
b. Dependent Variable: TOTAL_Y | |||||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
NPAR TESTS
/K-S(NORMAL)=RES_1
/MISSING ANALYSIS.
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 1.89882870 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
NPAR TESTS
/K-S(NORMAL)=RES_1
/MISSING ANALYSIS
/METHOD=EXACT TIMER(5).
Unstandardized Residual | ||
N | 100 | |
Normal Parametersa,b | Mean | .0000000 |
Std. Deviation | 1.89882870 | |
Most Extreme Differences | Absolute | .125 |
Positive | .049 | |
Negative | -.125 | |
Test Statistic | .125 | |
Asymp. Sig. (2-tailed) | .001c | |
Exact Sig. (2-tailed) | .081 | |
Point Probability | .000 | |
a. Test distribution is Normal. | ||
b. Calculated from data. | ||
c. Lilliefors Significance Correction. | ||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||||
B | Std. Error | Beta | Tolerance | VIF | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | .827 | 1.210 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | .639 | 1.565 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | .734 | 1.363 | ||
a. Dependent Variable: TOTAL_Y | |||||||||
Model | Dimension | Eigenvalue | Condition Index | Variance Proportions | ||||
(Constant) | TOTAL_X1 | TOTAL_X2 | TOTAL_X3 | |||||
1 | 1 | 3.962 | 1.000 | .00 | .00 | .00 | .00 | |
2 | .019 | 14.509 | .13 | .09 | .48 | .09 | ||
3 | .014 | 16.862 | .00 | .05 | .41 | .82 | ||
4 | .005 | 28.327 | .87 | .85 | .10 | .09 | ||
a. Dependent Variable: TOTAL_Y | ||||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3
/SAVE RESID.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
b. Dependent Variable: TOTAL_Y | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
Minimum | Maximum | Mean | Std. Deviation | N | |
Predicted Value | 11.46 | 20.30 | 17.70 | 1.781 | 100 |
Residual | -5.484 | 4.315 | .000 | 1.899 | 100 |
Std. Predicted Value | -3.502 | 1.461 | .000 | 1.000 | 100 |
Std. Residual | -2.844 | 2.238 | .000 | .985 | 100 |
a. Dependent Variable: TOTAL_Y | |||||
COMPUTE RES2=ABS_RES(RES_1).
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT RES2
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: RES2 | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .247a | .061 | .032 | 1.12474 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 7.911 | 3 | 2.637 | 2.085 | .107b | |
Residual | 121.445 | 96 | 1.265 | ||||
Total | 129.356 | 99 | |||||
a. Dependent Variable: RES2 | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | 3.646 | 1.185 | 3.076 | .003 | ||
TOTAL_X1 | -.096 | .085 | -.123 | -1.134 | .260 | ||
TOTAL_X2 | .081 | .060 | .165 | 1.334 | .185 | ||
TOTAL_X3 | -.139 | .063 | -.255 | -2.207 | .030 | ||
a. Dependent Variable: RES2 | |||||||
COMPUTE ABS=ABS(RES2).
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT ABS
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: ABS | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .247a | .061 | .032 | 1.12474 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 7.911 | 3 | 2.637 | 2.085 | .107b | |
Residual | 121.445 | 96 | 1.265 | ||||
Total | 129.356 | 99 | |||||
a. Dependent Variable: ABS | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | 3.646 | 1.185 | 3.076 | .003 | ||
TOTAL_X1 | -.096 | .085 | -.123 | -1.134 | .260 | ||
TOTAL_X2 | .081 | .060 | .165 | 1.334 | .185 | ||
TOTAL_X3 | -.139 | .063 | -.255 | -2.207 | .030 | ||
a. Dependent Variable: ABS | |||||||
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT TOTAL_Y
/METHOD=ENTER TOTAL_X1 TOTAL_X2 TOTAL_X3.
Model | Variables Entered | Variables Removed | Method |
1 | TOTAL_X3, TOTAL_X1, TOTAL_X2b | . | Enter |
a. Dependent Variable: TOTAL_Y | |||
b. All requested variables entered. | |||
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | .684a | .468 | .451 | 1.928 |
a. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | ||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
1 | Regression | 314.051 | 3 | 104.684 | 28.154 | .000b | |
Residual | 356.949 | 96 | 3.718 | ||||
Total | 671.000 | 99 | |||||
a. Dependent Variable: TOTAL_Y | |||||||
b. Predictors: (Constant), TOTAL_X3, TOTAL_X1, TOTAL_X2 | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | -.238 | 2.032 | -.117 | .907 | ||
TOTAL_X1 | .915 | .145 | .516 | 6.298 | .000 | ||
TOTAL_X2 | -.208 | .104 | -.187 | -2.009 | .047 | ||
TOTAL_X3 | .593 | .108 | .479 | 5.506 | .000 | ||
a. Dependent Variable: TOTAL_Y | |||||||
NEW FILE.
DATASET NAME DataSet1 WINDOW=FRONT.
DATASET ACTIVATE DataSet0.
DATASET CLOSE DataSet1.
ABOUT
Navigation Controls
Toolbar Buttons
Undo - Undoes the last change in the document. | |
Edit - Open the Editor tool for tables and charts. Certain editing options are only available when you are connected to an Internet server. | |
Save - Creates a new copy of the Web Report with the saved changes. | |
Print - Prints the current object when in Object View and all objects in Page View. | |
Page View - Switches the Web Report to display all the tables and charts on a single page. | |
Object View - Switches the Web Report so that each table or chart is displayed one at a time. |
Connecting to a Server
Editing Tables
Some of this functionality is only available when connected to an Internet server. | |
Create a chart - Create a chart from the selected cells in the table. | |
Pivot and Sort - Transpose, sort, and pivot the table. | |
Background color - The background color of the selected cells. | |
Text Color and Style - Font color, style, and size. | |
Number Format - Font color, style, and size. |
Editing Charts
All of this functionality is only available when connected to an Internet server. | |
Chart Size - Change the height and width of the chart | |
Background color - The background color of the selected object. | |
Border and Line Style - The color and thickness of the line or border. | |
Text Color and Style - Font color, style, and size. | |
Number Format - Font color, style, and size. | |
Axis Properties - Change the scale and display axis titles and ticks. |
Lock aspect ratio |
0.00 |
Display Axis Title | |||
Display Ticks |