# **UNIVERSITAS**

## Analisa Pengendalian Kualitas Atap Galvalum Untuk Meminimalisir Kecatatan Dengan Menggunakan Metode FMECA (Failure Mode Effect And Criticality Analysis) dan RCA (Root Cause Analysis) Pada PT Trisakti Jaya

Oleh:

Rangga Bustanul Firdaus,

Wiwik Sulistiyowati ST., MT.

Program Studi Teknik Industri

Universitas Muhammadiyah Sidoarjo

Mei, 2024











## Pendahuluan

PT. Trisakti Jaya adalah sebuah perusahaan yang bergerak di bidang produksi galvalume. Terletak pada pergudangan Margo Mulyo Permai blok C-6 Surabaya. Memiliki 6 kendaraan long vehicle dan memiliki karyawan kurang lebih 200 orang. Perusahaan ini berdiri sejak tahun 2005. Permasalahan yang terjadi adalah adanya kecacatan produk yang terjadi, sehingga kepuasan pelanggan berkurang dan bisa merugikan perusahaan. Disini dijelaskam bagaimana cara mengatasi dan menemukan jalan keluar serta mencari solusi dari permasalahan ini. Pada penelitian ini menggunakan metode FMECA (Failure Mode Effect And Criticality Analysis) dan RCA (Root Cause Analysis). Pada metode FMECA (Failure Mode Effect And Criticality Analysis) menjelaskan bagaimana presentase kecacatan produk bisa terjadi, dan berapa presentase yang timbul setelah menggunakan metode ini. Sedangkan pada metode RCA (Root Cause Analysis) adalah metode yang menentukan bagaimana solusi dari sebuah permasalahan bisa didapat agar menemukan jalan keluar yang terbaik bagi perusahaan.













## Tujuan Penelitian

- 1. Mengukur kecacatan produk dari masing masing proses produksi dengan menggunakan metode FMECA(Failure Mode Effect and Critical Analysis).
- 2. Meminimalisir kecacatan produk dengan menggunakan RCA (Root Cause Anaylsis)













#### Metode

Menurut Indrajaya (2020), metode FMECA (Failure Mode Effects And Criticality Analysis) merupakan metode yang dirancang untuk mengenali model kegagalan dari suatu produk maupun suatu proses, dengan tujuan memperhitungkan resiko yang terikat dengan sumber energi manusia yang menjadi mode kegagalan serta mengabaikan peringkat permasalahan yang bernilai dan juga dengan mengenali serta melaksanakan kegiatan korektif buat menangani permasalahan yang sungguh- sungguh.

Menurut Idad (2020), menyatakan bahwa ketika sebuah sistem atau mesin gagal, salah satu cara untuk mencari tahu mengapa adalah melakukan *Root Cause Analysis*. dapat menggunakan metode ini untuk meninjau penyebab kegagalan mulai dari hal-hal yang mendasar dan kemudian paling mengumpulkan masing-masing penyebab untuk membantu mengidentifikasi penyebab akar dari kegagalannya.











umsida1912





#### Metode Penelitian

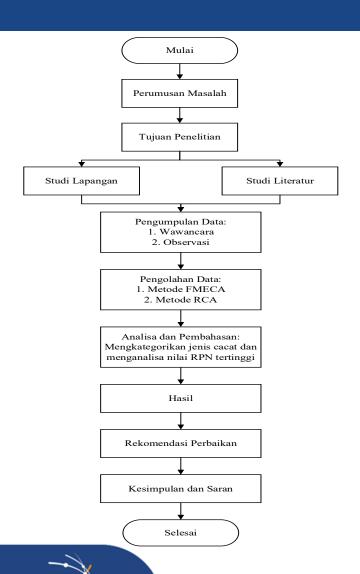



Diagram alir penelitian menjelaskan proses berlangsungnya penelitian yaitu dilakukan studi lapangan dan studi literatur, kemudian merumuskan masalah dan tujuan penelitian, setelah itu mengumpulkan data dengan wawancara, observasi dan meminta data perusahaan atas ijin supervisor, tahap berikutnya pengolahan data yang pertama yaitu peta kendali untuk perhitungan batas kendali atas dan batas kendali bawah, yang kedua FMECA untuk menentukan tingkat kegagalan dinilai dengan menghitung nilai Risk Priority Number (RPN). Dari hasil perhitungan dapat dianalisa tingkat resiko kecacatan. Sedangkan untuk menentukan penyebab kegagalan adalah dengan metode Root Cause Analysis (RCA). Sehingga didapatkan usulan perbaikan yang bisa dijadikan pertimbangan secara terus menerus untuk meningkatkan kualitas produk.













# Pengumpulan Data

Pada tahun 2022, menurut data perusahaan, ada variasi signifikan dalam jumlah cacat produk galvalum yang diterima dari pemasok yang berbeda. Berikut adalah data kecacatan galvalum pada penelitian ini Dapat diketahui kecacatan tertinggi terjadi pada bulan Desember sebesar 33% dari total kecacatan pada data tersebut dengan 8170 unit. Sedangkan terbesar kedua kecacatan terjadi pada bulai Mei sebesar 23% atau sebesar 5870 unit. Kemudian terbesar ketiga terjadi pada bulan April sebesar 19% atau 4852 unit.

|          | Total    |                 |                      | Jenis Kecacatan |           |       |  |
|----------|----------|-----------------|----------------------|-----------------|-----------|-------|--|
| Bulan    | Produksi | Reject Produksi | Prosentase Cacat (%) | Sobek           | Berlubang | Pesok |  |
| Desember | 44.745   | 8.170           | 33%                  | 2451            | 2042      | 3677  |  |
| Januari  | 39.052   | 3.852           | 15%                  | 1156            | 963       | 1733  |  |
| Februari | 16.653   | 778             | 3%                   | 233             | 195       | 350   |  |
| Maret    | 20.207   | 1.537           | 6%                   | 461             | 384       | 692   |  |
| April    | 30.232   | 4.852           | 19%                  | 1456            | 1213      | 2183  |  |
| Mei      | 36.590   | 5.870           | 23%                  | 1761            | 1468      | 2641  |  |
| Jumlah   | 187.479  | 25.059          | 100%                 | 7518            | 6265      | 11276 |  |

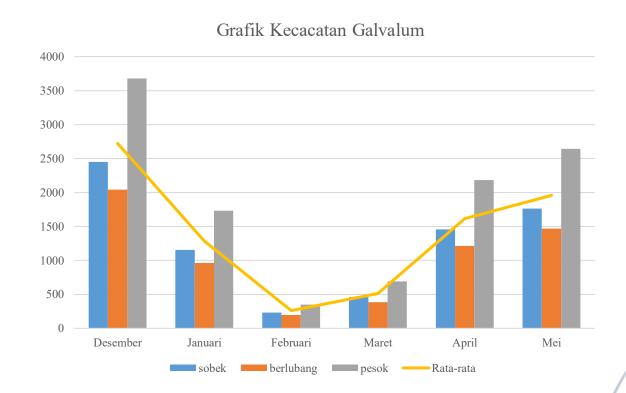















# Histogram

Diagram berikut adalah salah satu alat yang digunkan untuk membantu dalam melihat grafik dari data kecacatan yang terdapat pada tabel 1. Data yang dimasukkan pada diagram adalah data kecacatan dan rata-rata dari tiap kecacatan yang terjadi pada tiap bulan. Berikut adalah adalah diagram data kecacatan galvalume

Dapat dilihat bulan Desember memiliki ratarata kecacatan galvalum tertiggi dibanding bulan lainnya. Sedangkan bulan yang memiliki rata-rata kecacatan terendah adalah pada bulan Februari. Hal tersebut menjadi tolak ukur bahwa produksi pada bulan Desember perlu mendapatkan pengawasan berlebih agar tidak terjadi terus menerus.

















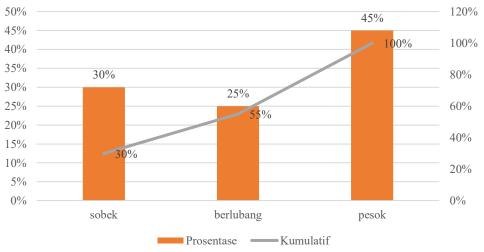

# Diagram Pareto

Diagram pareto adalah alat kualitas yang digunakan untuk menentukan kumulatif data kecacatan yang dapat mengetahui jenis kecacatan tertinggi. Sebelum membuat diagram pareto terlebih dahulu membuat tabel kumulatif. Berikut adalah tabel kumulatif

Pertama, cacat jenis pesok menjadi prioritas utama dengan persentase sebesar 45%. Kedua, cacat jenis sobek menjadi prioritas kedua dengan persentase sebesar 30%. Sementara itu, cacat jenis gagang menjadi prioritas ketiga dengan persentase sebesar 25%. Analisis tabel tersebut menunjukkan bahwa cacat paling dominan adalah jenis pesok. Data ini dapat direpresentasikan dalam diagram pareto

| Jenis Kecacatan | Jumlah | Prosentase | Kumulatif |
|-----------------|--------|------------|-----------|
| Sobek           | 7518   | 30%        | 30%       |
| Berlubang       | 6265   | 25%        | 55%       |
| Pesok           | 11276  | 45%        | 100%      |















umsida1912





## Peta Kendali Jenis Cacat Sobek Galvalum

Berikut ini adalah pengolahan data jenis cacat sobek untuk mencari CL, UCL dan LCL pada produksi tahun 2022 sebagai berikut.

Menghitung Proporsi kesalahan:

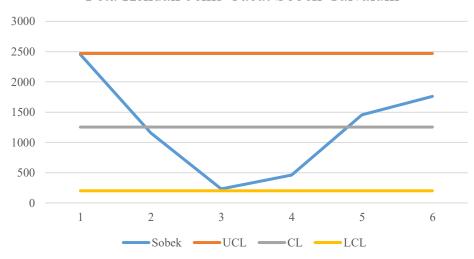
$$p = \frac{np}{n}$$
$$= \frac{2451}{44745} = 0.055$$

Menghitung rata rata atau CL:

$$CL = p = \frac{\Sigma np}{\Sigma n}$$

$$= \frac{7518}{6} = 1257$$

Menghitung UCL (Upper Control Limit)


$$UCL = p + 2 \frac{\sqrt{p(1-p)}}{n}$$
= 1257 + 1053
= 2470

Menghitung LCL (Lower Control Limit)

$$LCL = p - 2 \frac{\sqrt{p(1-p)}}{n}$$
= 1257 - 1053
= 200

| Bulan    | Total<br>Produksi | Sobek | Proporsi | UCL  | CL   | LCL |
|----------|-------------------|-------|----------|------|------|-----|
| Desember | 44.745            | 2451  | 0,055    | 2470 | 1257 | 200 |
| Januari  | 39.052            | 1156  | 0,030    | 2470 | 1257 | 200 |
| Februari | 16.653            | 233   | 0,014    | 2470 | 1257 | 200 |
| Maret    | 20.207            | 461   | 0,023    | 2470 | 1257 | 200 |
| April    | 30.232            | 1456  | 0,048    | 2470 | 1257 | 200 |
| Mei      | 36.590            | 1761  | 0,048    | 2470 | 1257 | 200 |
| Jumlah   | 187.479           | 7518  | 0,040    |      |      |     |

Peta Kendali Jenis Cacat Sobek Galvalum



















### Peta Kendali Jenis Cacat Pesok Galvalum

Berikut ini adalah pengolahan data jenis cacat pesok untuk mencari CL, UCL dan LCL pada produksi tahun 2022 sebagai berikut.

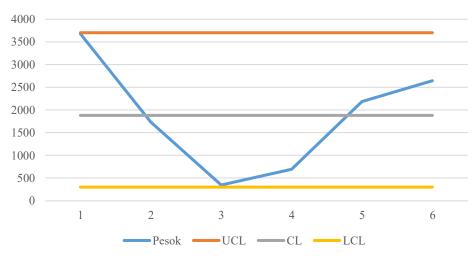
Menghitung Proporsi kesalahan:

$$p = \frac{np}{n}$$
$$= \frac{3677}{44745} = 0.082$$

Menghitung rata rata atau CL:

$$CL = p = \frac{\Sigma np}{\Sigma n}$$
$$= \frac{11276}{6} = 1881$$

Menghitung UCL (Upper Control Limit)


$$UCL = p + 2 \frac{\sqrt{p(1-p)}}{n}$$
$$= 1881 + 1579$$
$$= 3700$$

Menghitung LCL (Lower Control Limit)

$$LCL = p - 2 \frac{\sqrt{p(1-p)}}{n}$$
= 1881 - 1579
= 300

| Bulan    | Total Produksi | Pesok | Proporsi | UCL  | CL   | LCL |
|----------|----------------|-------|----------|------|------|-----|
| Desember | 44.745         | 3677  | 0,082    | 3700 | 1881 | 300 |
| Januari  | 39.052         | 1733  | 0,044    | 3700 | 1881 | 300 |
| Februari | 16.653         | 350   | 0,021    | 3700 | 1881 | 300 |
| Maret    | 20.207         | 692   | 0,034    | 3700 | 1881 | 300 |
| April    | 30.232         | 2183  | 0,072    | 3700 | 1881 | 300 |
| Mei      | 36.590         | 2641  | 0,072    | 3700 | 1881 | 300 |
| Jumlah   | 187.479        | 11276 | 0,060    |      |      |     |





















#### **FMECA**

Critical Analysis yaitu proses penilaian dan pengklasifikasi resiko kegagalan. Pada tahap ini akan mengklasifikasikan penyebab kecacatan yang terjadi akibat kegagalan yang berada pada bulan desember.

Berdasarkan pada tabel terdapat 5 penilaian untuk mengevaluasi skor kegagalan dengan menggunakan Risk Priority Number (RPN). Penentuan nilai RPN dilakukan dengan mengalikan antara nilai Severity, Occurrence, dan Detection dimana nilai tersebut hasil dari identifikasi setelah melakukan observasi dan wawancara dengan supervisor produksi. Adapun perhitungan dari Risk Priority Number (RPN)

| <b>Derajat Kritis</b> | Nilai   | Risiko       |
|-----------------------|---------|--------------|
| Minor                 | 0-30    | Acceptable   |
| Medium                | 31-100  | Tolerable    |
| High                  | 101-180 | Unacceptable |
| Very High             | 181-252 | Unacceptable |
| Critical              | >252    | Unacceptable |

| Jenis<br>cacat | Mode<br>Kegagalan                                     | Efek<br>Kegagalan                   | S | O | D | RPN |
|----------------|-------------------------------------------------------|-------------------------------------|---|---|---|-----|
| Sobek          | Pemasangan<br>di mesin<br>pemotongan<br>tidak presisi | Sobek saat<br>selesai<br>pemotongan | 5 | 4 | 7 | 140 |
| Pesok          | Proses<br>penyimpana<br>n yang<br>terlalu kasar       | Pesok pada<br>satu rak<br>galvalum  | 5 | 6 | 7 | 210 |

















#### **FMECA**

Diketahui resiko tertinggi pertama yaitu jenis cacat pesok dengan kegagalan pada proses penyimpanan yang terlalu kasar dan efeknya pesok pada satu rak galvalum dengan nilai RPN 210. Setelah itu, resiko tertinggi kedua yaitu jenis cacat sobek dengan kegagalan pemasangan di mesin pemotongan tidak presisi dan efeknya sobek saat selesai pemotongan dengan nilai RPN 140. Kemudian pada tahap berikutnya didapatkan nilai RPN dari perhitungan *Failure Mode Effect and Analysis* (FMEA), maka dilakukan analisis lebih lanjut berdasarkan tabel Critically, apakah masuk dalam kategori (acceptable) tidak adanya kendala, (Tolerable) tidak dijadikan prioritas perbaikan serta (*Unacceptable*) perlu dilakukan perbaikan, berikut adalah contoh perhitungan RPN:

RPN Sobek = 
$$S \times O \times D$$
  
=  $5 \times 4 \times 7 = 140$ 

Berdasarkan tabel 7 diatas menjelaskan bahwa perhitungan nilai RPN terdapat dua nilai termasuk dalam kategori very high dan high, yang pertama diperoleh nilai tertinggi pada cacat pesok dengan efek kegagalan yaitu pesok pada satu rak galvalum dengan nilai RPN 210, termasuk dalam derajat keritis very high, sehingga perlu dilakukan perbaikan (unacceptable). Untuk yang kedua pada cacat sobek dengan penyebab kegagalan yaitu sobek saat selesai pemotongan dengan nilai RPN 140 termasuk dalam derajat keritis high, sehingga perlu dilakukan perbaikan (*unacceptable*).

| Jenis Cacat | Mode Kegagalan                           | Efek Kegagalan                  | RPN | Derajat Kritis | Risiko       |
|-------------|------------------------------------------|---------------------------------|-----|----------------|--------------|
| Sobek       | Pemasangan yang<br>tidak presisi         | Sobek saat selesai pemotongan   | 140 | High           | Unacceptable |
| Pesok       | Proses penyimpanan<br>yang terlalu kasar | Pesok pada satu rak<br>galvalum | 210 | Very High      | Unacceptable |















#### RCA

Analisa penyebab *waste* yang berpengaruh dengan menggunakan *root cause analysis*. Analisa tersebut untuk menentukan penyebab kegagalan yang terjadi pada kecacatan sobek dan pesok pada bulan desember yang menyebabkan jumlah produk cacat yang diluar kendali. Menemukan lternatif eliminasi *waste* tersebut maka dilakukan analisa terhadap penyebab terjadinya. Berikut adalah akar penyebab kecacatan.

Rekomendasi perbaikan pada penyebab terjadinya kecacatan sobek galvalum pada bulan desember di PT Trisakti Jaya adalah mengingatkan metode penggunaan mesin pemotongan pada operator. Sedangkan perbaikan pada penyebab terjadinya kecacatan pesok galvalum pada bulan desember di PT Trisakti Jaya adalah memperbaiki penerangan di sudut gudang yang kurang terang.

| Jenis<br>cacat | Deskripsi<br>kecacatan           | Why 1                               | Why 2                               | Why 3                                  | Why 4                                   | Why 5 |
|----------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|-------|
| Sobek          | Sobek saat selesai<br>pemotongan | Karyawan kurang<br>teliti           | Pemotongan tidak<br>sesuai ukuran   | Tidak mengecek mesin                   | Kurang teliti saat<br>menggunakan mesin |       |
| Pesok          | Pesok pada satu<br>rak galvalum  | Karyawan kurang<br>teliti dan fokus | Peletakan di area<br>sedikit cahaya | Beberapa sudut gudang minim penerangan |                                         |       |

| Waste | Deskripsi Kecacatan              | Akar Penyebab                          | Rekomendasi Perbaikan                                         |
|-------|----------------------------------|----------------------------------------|---------------------------------------------------------------|
| Sobek | Sobek saat selesai<br>pemotongan | Kurang teliti saat menggunakan mesin   | Mengingatkan metode penggunaan mesin pemotongan pada operator |
| Pesok | Pesok pada satu rak<br>galvalum  | Beberapa sudut gudang minim penerangan | Memperbaiki penerangan di sudut gudang yang kurang terang     |













# Kesimpulan Penelitian

- Kesimpulan yang didapatkan pada penelitian tentang pengendalian kualitas produk galvalum pada PT Trisakti Jaya adalah jenis kecacatan sobek dan pesok. Sobek dan pesok adalah keacatan tertinggi dan kecacatan tersebut tertinggi terjadi pada bulan desember. Hal tersebut dikarenakan data kecacatan tersebut telah mendekati batas atas peta kendali. Dimana UCL (Upper Control Limit) sobek adalah 2470 sementara data kecacatan sebesar 2451. Sedangkan UCL (*Upper Control Limit*) pesok adalah 3700 sementara data kecacatan sebesar 3677. Sehingga pembahasan untuk mencari penyebab kegagalan dan rekomendasi perbaikan pada sobek dan pesok di bulan desember.
- Hasil FMECA adalah jenis cacat sobek dengan RPN 140 dan cacat pesok RPN 210 yang keduanya unacceptable. Penyebab kegagalan sobek adalah pemasangan yang tidak presisi dan pesok adalah proses penyimpanan yang terlalu kasar. Hal tersebut di akibatkan kecacatan sobek adalah kurang teliti saat menggunakan mesin dan pesok adalah beberapa sudut gudang minim penerangan. Rekomendasi perbaikan pada kecacatan sobek adalah mengingatkan metode penggunaan mesin pemotongan pada operator dan pesok adalah memperbaiki penerangan di sudut gudang yang kurang terang.















- [1] W. H. Absor Tb, "Analisis Kualitas Pelayanan Dengan Metode Service Quality (SERVQUAL) Dan Importance Performance Analysis (IPA) Pada PT. Media Purna Engineering," J. Manaj. indutri dan logistik, vol. 1, no. 2, 2018.
- [2] S. Andayani, "Metode Importance Performance Analysis (IPA) Untuk Menentukan Harapan Konsumen Toko Online Terhadap Kualitas Layanan Website," Univ. Khatolik Musi Charitas. Fak. Sains Dan Teknol. Progr. Stud. Sist. Inf., pp. 13–18, 2018.
- [3] N. Q. dan B. S. Anggriana Rina, "Pengaruh Harga, Promosi, Kualitas Layanan Terhadap Kepuasan Pelanggan Jasa Ojek Online 'Om-Jek' Jember," Fak. Ekon. Uiversitas Muhammadiyah Jember, vol. 7, no. 2, pp. 137–156, 2017.
- R. A. Apriyanto, "Analisis Kualitas Pelayanan Parkir Dengan Metode Servqual, Ipa Dan Qfd Untuk Meningkatkan Kepuasan Pelanggan Di Pt. Securindo Packatama Indonesia," Dosen Tek. Ind. Univ. Pamulang, vol. 2, no. 2, 2019.
- [5] U. B. W. Bahiyyah Fina Durriyatun, "Analisis Kualitas Layanan Akademik Madrasah Dengan Metode Servqual Pada Pendidik Dan Tenaga Kependidikan," *Univ. Negeri Yogyakarta*, vol. 6, no. 1, pp. 1–10, 2019.
- [6] L. Deo Pondaag G. E, Regi Sanjaya, "Analisis Kualitas Layanan Lazada Dengan Menggunakan Metode E-Servqual Dan IPA," Progr. Stud. Manaj. Sekol. Tinggi Ilmu Ekon. Harapan Bangsa, vol. 2, no. 1, 2018.
- S. P. Ekawaningsih Prihastuti, kokom komariyah, *Restoran*. Jakarta: Direktorat Jenderal Manajemen Pendidikan Dasar Dan Menengah, 2008.















- [8] T. Y. B. Ginting Rosnani, "Desain Ulang Produk Tempat Tissue Multifungsi Dengan Menggunakan Metode Quality Function Deployment," Dep. Tek. Ind. Fak. Tek. Univ. Sumatera Utara, vol. 19, no. 2, 2017.
- [9] A. H. P. K. P. Hasan Sabri, "Loyalitas Pasien Rumah Sakit Pemerintah: Ditinjau Dari Perspektif Kualitas Layanan, Citra, Nilai Dan Kepuasan," Fak. Ekon. Univ. Muslim Indones., vol. 18, no. 3, pp. 184–196, 2018.
- [10] A. Y. K. Horax Michelle, Lucy Sanjaya, Jessica Pratiwi, "Analisis Kepuasan Konsumen terhadap Pelayanan Restoran Cepat Saji (Restoran X) dengan Metode Service Quality (Servqual)," Progr. Stud. Tek. Ind. Univ. Kristen Petra Surabaya, Indones., vol. 18, pp. 65–74, 2017.
- [11] D. Indrajaya, "Analisis Kualitas Pelayanan Terhadap Tingkat Kepuasan Konsumen Menggunakan Metode Import Performance Analysis Dan Customer Satisfaction Index Pada UKM Gallery," *Univ. Indraprasta PGRI*, vol. 2, no. 3, pp. 1–6, 2018.
- [12] P. D. D. Kusumah Echo Perdana, Ratih Hurriyati, "Atribut Pemilihan Kualitas Restoran: Citra Merek dan Harga," *Univ. Pendidik. Indones.*, vol. 6, no. 2, pp. 117–126, 2019.
- [13] N. H. Musqari Nurul, "Pengaruh Kualitas Layanan terhadap Loyalitas Melalui Variabel Kepuasan pada Lembaga Amil Zakat (Studi pada Baituzzakah Pertamina Kantor Pusat)," *Univ. Yars. Jakarta*, vol. 2, no. 1, pp. 34–53, 2018.













- [14] L. C. Novita, "Kualitas Layanan Pada Galeri Investasi Universitas Bunda Mulia Dengan Menggunakan Metode Servqual," Fak. Ilmu Sos. dan Humaniora, Univ. Bunda Mulia, vol. 12, no. 1, 2016.
- [15] H. S. Prima Nikita Irani, Sujiono, "Pentingnya Penerapan Model Service Quality (Servqual) Dalam Perbaikan Kualitas Layanan Jasa Pengiriman Barang Pada Kantor Pos Ponorogo," Fak. Ekon. Univ. Muhammadiyah Ponorogo, vol. 2, no. 1, pp. 50–55, 2018.
- [16] H. Al Rasyid, "Pengaruh Kualitas Layanan Dan Pemanfaatan Teknologi Terhadap Kepuasan Dan Loyalitas Pelanggan Go-Jek," Jakarta AMIK BSI Jakarta, vol. 1, no. 2, pp. 210–223, 2019.
- [17] R. Alfatiyah, "Analisis Kualitas Jasa Periklanan Dengan Kombinasi Metode Servqual Dan Quality Function Deployment (Qfd) Untuk Meningkatkan Kepuasan Pelanggan," Dosen Tek. Ind. Univ. Pamulang, vol. 1, no. 1, 2018.
- [18] E. S. Sigit Kharisma Nawang, "Kualitas Produk Dan Kualitas Layanan Terhadap Kepuasan Dan Loyalitas Nasabah," Dep. Magister Manaj. Progr. Pascasarj., vol. 21, no. 1, pp. 157–168, 2017.
- [19] M. Y. A. Verriana Rusdyana Intan, "Pengaruh Kualitas Layanan (Service Quality) Terhadap Loyalitas Melalui Kepuasan Pada Mahasiswa Universitas Nu Surabaya," Fak. Ekon. dan Bisnis, Univ. Nahdlatul Ulama Surabaya, vol. 1, no. 1, 2017.













- [20] W. Dkk, "Desain Ulang Produk Temoat Tissue Multifungsi Dengan Menggunakan Metode Quality Function Deployment," Univ. Sumatera Utara. Fak. Tek. Dep. Tek. Ind., vol. 19, no. 2, pp. 1–9, 2017.
- [21] E. P. A. Zakiy Muhammad, "Pengaruh Kualitas Layanan Terhadap Loyalitas Nasabah Bank Syariah Dengan Kepuasan Nasabah Sebagai Variabel Intervening," Progr. Stud. Ekon. dan Perbank. Perbank. Islam. Fak. Agama Islam. Univ. Muhammadiyah Yogyakarta, vol. 3, no. 1, 2017.
- [22] E. Zuraidah, "Analisis Kualitas Pelayanan Restoran Cepat Saji dengan Metode Servqual (Service Quality)," no. No. 2, pp. 137–139, 2018, vol. Vol.5, [Online]. Available: https://e-Prosisko, jurnal.lppmunsera.org/index.php/PROSISKO/article/view/726/756















