

Sistem Kendali Kompor Otomatis Dan Pengatur Suhu Masakan Berbasis Mikrokontroller NodeMCU ESP8266

Oleh:

Muhammad Nauval Khoiron Hamdani, Indah Sulistiyowati Teknik Elektro Universitas Muhammadiyah Sidoarjo 02, 2023

Pendahuluan

Kompor merupakan salah satu alat utama yang digunakan dalam rumah tangga. Alat ini digunakan untuk memasak makanan maupun minuman serta digunakan untuk menghangatkan kembali makanan yang telah matang.

Penggunaan kompor dalam kehidupan sehari – hari membawa dampak yang menguntungkan maupun merugikan. Kompor sebagai alat yang digunakan untuk membantu kegiatan manusia, namun juga membawa dampak dari sisi kelemahanya yaitu dapat menyebabkan beberapa kasus kecelakaan rumah tangga yang disebabkan karena kelalaian dari masyarakat sendiri.

Menurut beberapa survei yang bisa dijumpai, masih banyak kecelakaan yang terjadi akibat masyarakat lupa untuk mematikan kompor. Sangat jelas adanya dampak yang begitu besar dari kelalaian yang kita anggap sepele. Kompor gas merupakan salah satu kompor yang banyak mengakibatkan kecelakaan rumah tangga, namun hingga saat ini banyak masyarakat yang masih menggunakan kompor gas.

Seiring berkembangnya teknologi terciptalah sebuah kompor listrik, teknologi kompor listrik sekarang juga berkembang dari yang awalnya manual menjadi otomatis, dengan menggabungkan teknologi ke dalam komponennya, kompor menjadi lebih aman dan efisien namun fitur dari kompor yang beredar di pasaran saat ini masih terbilang kurang menarik.

Oleh karena itu, penulis mempersembahkan sebuah alat " SISTEM KENDALI KOMPOR OTOMATIS DAN PENGATUR SUHU MASAKAN BERBASIS MIKROKONTROLLER NODEMCU ESP8266" sebuah kompor dengan dua buah sensor pendeteksi serta dapat terkoneksi dengan smartphone.

Rumusan Masalah

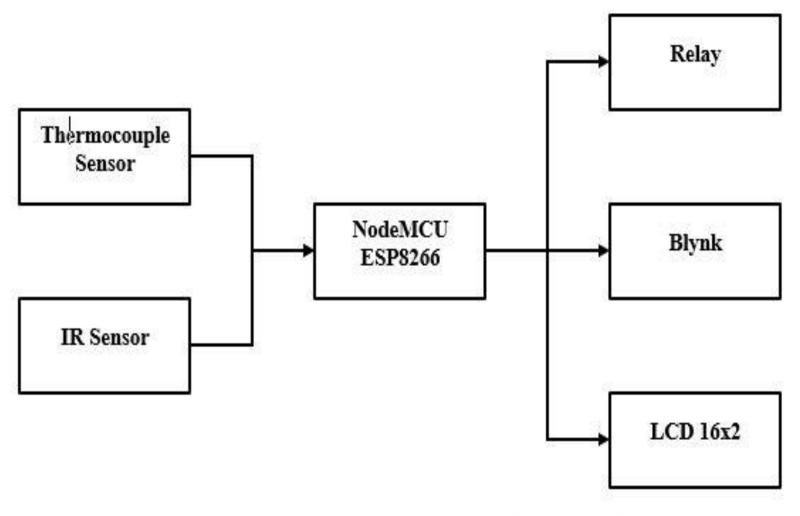
- Bagaimana cara merancang sistem kendali kompor otomatis dan pengatur suhu masakan menggunakan mikrokontroler NodeMCU ESP8266?
- Bagaimana cara kompor dapat tersambung dengan aplikasi blynk pada smartphone?

Tujuan Penelitian

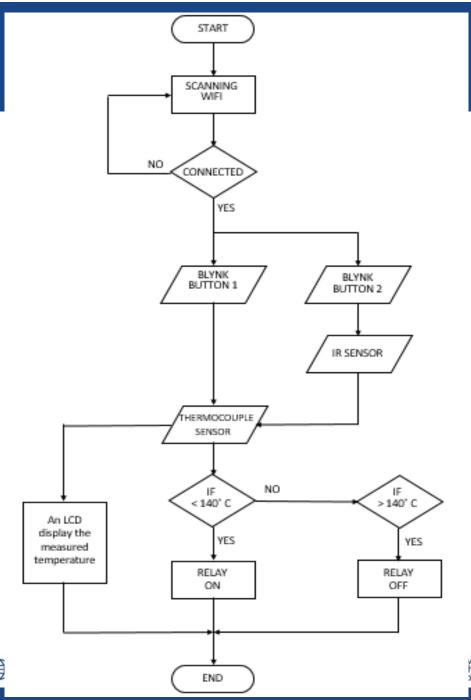
- Merancang dan merealisasikan sistem kendali kompor otomatis dan pengatur suhu masakan menggunakan mikrokontroler NodeMCU ESP8266.
- Memanfaatkan teknologi Internet Of Thing agar dapat tersambung secara realtime antara aplikasi blynk dengan kompor.

Batasan Masalah

- Mikrokontroler menggunakan NodeMCU ESP8266
- Display menggunakan LCD 16x2
- User Interface menggunakan Blynk App
- Menggunakan 2 modul sensor yaitu modul sensor suhu Thermocouple type K dan modul sensor pendeteksi cahaya Infrared.

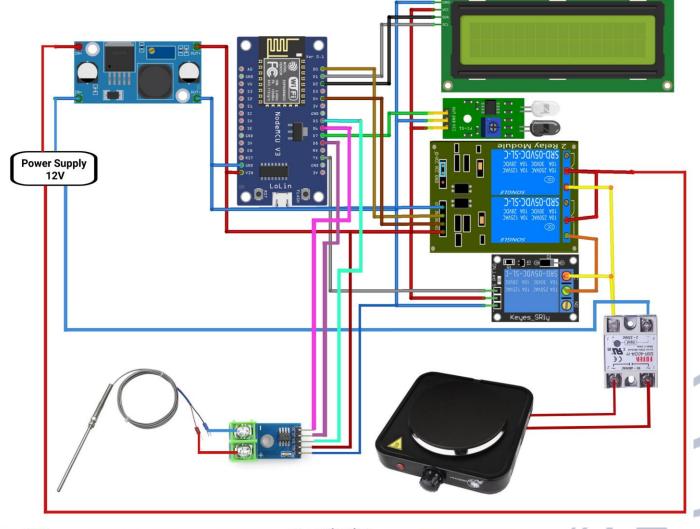


Blok Diagram Sistem



umsida1912

Flowchart



Rangkaian Skematik

LCD I2C	NodeMCU ESP8266
VCC	Vin
GND	GND
SDA	D2
SCL	D1
Sensor	
Infrared	
VCC	Vin
GND	GND
Out	D 7
Relay	
VCC	Vin
GND	GND
IN1	D0
IN2	D4
IN3	TX
Sensor	
Thermocouple	
VCC	Vin
GND	GND
SCK	D 5
CS	D8
SO	D6

umsida1912

12V POWER SUPPLY TESTING

Tabel II menampilkan hasil dari sepuluh pengujian dari multitester yang dilakukan pada catu daya 12 volt. Dapat disimpulkan bahwa tegangan 12 volt yang digunakan pada alat ini akurat mengingat hasil pengujian akurasi 100%.

TABLE II 12V POWER SUPPLY TESTING

Testing to-	Voltage needed (V)	Multimeter (V)	Accuracy (%)
1	12	12	100
2	12	12	100
3	12	12	100
4	12	12	100
5	12	12	100
6	12	12	100
7	12	12	100
8	12	12	100
9	12	12	100
10	12	12	100
Average	12	12	100

STEP DOWN TESTING

Tabel III menunjukkan pengujian modul step down 5 volt menggunakan multi tester dengan sepuluh kali pengujian dan diperoleh akurasi 100%. Dapat disimpulkan tegangan 5 volt yang digunakan pada alat ini sudah akurat.

TABLE III STEP DOWN TESTING

Testing to-	Voltage needed (V)	Multimeter (V)	Accuracy (%)
1	5	5	100
2	5	5	100
3	5	5	100
4	5	5	100
5	5	5	100
6	5	5	100
7	5	5	100
8	5	5	100
9	5	5	100
10	5	5	100
Average	5	5	100

TES KONEKSI WIFI PADA NODEMCU ESP8266

Hasil dari sepuluh pengujian koneksi WiFi ke NodeMCU ESP8266 mendapat hasil dengan waktu tunggu 4 hingga 5 detik. Hasil pengujian menunjukkan bahwa NodeMCU ESP8266 dapat membangun koneksi WiFi berkecepatan sedang.

TABLE IV
TESTING WIFI CONNECTION TO NODEMCU
ESP8266

	WiFi ESP8266		
Testing to-	Condition	Waiting Time (s)	Accuracy (%)
1st Test	Connected	5	Medium
2nd Test	Connected	4	Medium
3rd Test	Connected	5	Medium
4th Test	Connected	5	Medium
5th Test	Connected	4	Medium
6th Test	Connected	5	Medium
7th Test	Connected	5	Medium
8th Test	Connected	4	Medium
9th Test	Connected	5	Medium
10th Test	Connected	4	Medium

Thermocouple sensor TESTING

Tabel V menunjukkan hasil pengujian sensor termokopel sebanyak sepuluh kali menggunakan termometer. Pembacaan suhu antara sensor termokopel dan termometer Celcius yaitu sekitar 1-10 derajat Celcius. Pengujian ini memperoleh akurasi ratarata sebesar 93,83%.

TABLE V THERMOCOUPLE SENSOR TESTING

Testing to-	Thermocouple (°C)	Thermometer (°C)	Accuracy (%)
1	35.50	35.00	98.60
2	37.00	36.00	97.30
3	42.00	41.00	97.70
4	46.50	45.00	96.80
5	67.00	61.00	91.10
6	84.50	78.00	92.30
7	94.00	87.00	92.60
8	98.50	89.00	90.40
9	99.50	90.00	90.50
10	100.00	91.00	91.00

IR SENSOR TESTING

Pada Tabel VI, percobaan sensor infrared telah diuji sebanyak sepuluh dengan hasil pengujian yang sesuai antara perintah dan realisasi sensor. Perintah dan realisasi pengujian sensor infrared semuanya terdeteksi sebagaimana mestinya. Hal ini menunjukkan bahwa peralatan telah bekerja dengan baik.

TABLE VI *IR SENSOR TESTING*

Testing	IR Sensor		Description
to-	Command	Realization	Description
1st Test	Barrier	HIGH	Appropriate
2nd Test	No Barrier	LOW	Appropriate
3rd Test	Barrier	HIGH	Appropriate
4th Test	No Barrier	LOW	Appropriate
5th Test	Barrier	HIGH	Appropriate
6th Test	No Barrier	LOW	Appropriate
7th Test	Barrier	HIGH	Appropriate
8th Test	No Barrier	LOW	Appropriate
9th Test	Barrier	HIGH	Appropriate
10th Test	No Barrier	LOW	Appropriate

RELAY TESTING

Uji coba relay telah dilakukan sebanyak 10 kali dengan hasil pengujian yang sesuai antara perintah dan implementasi relay. Semua perintah dan realisasi uji coba relay diidentifikasi dengan benar. Hal ini menunjukkan bahwa semuanya telah beroperasi sebagaimana mestinya.

TABLE VII RELAY TESTING

Testing	IR Sensor		Description
to-	Command	Realization	Description
1st Test	HIGH	HIGH	Appropriate
2nd Test	LOW	LOW	Appropriate
3rd Test	HIGH	HIGH	Appropriate
4th Test	LOW	LOW	Appropriate
5th Test	HIGH	HIGH	Appropriate
6th Test	LOW	LOW	Appropriate
7th Test	HIGH	HIGH	Appropriate
8th Test	LOW	LOW	Appropriate
9th Test	HIGH	HIGH	Appropriate
10th Test	LOW	LOW	Appropriate

