Artikel_DAVID_CEK_PLAGIASI.pd f

Submission date: 29-Aug-2023 09:37AM (UTC+0700)

Submission ID: 2153179081

File name: Artikel_DAVID_CEK_PLAGIASI.pdf (1.23M)

Word count: 5752

Character count: 30013

Risk Analysis Of Manual Material Handling Using Recommended Weight Limit, Job Strain Index And Job Safety Analysis Method

[Analisa Risiko Manual Material Handling Menggunakan Metode Recommended Weight Limit, Job Strain Index Dan Job Safety Analysis]

vid Dwi Rahmadhan¹⁾, Boy Isma Putra²⁾

Abstract. PT IJA is an extruded aluminum producer, loading and unloading operator attendance data from January to March 2023 there are at least 2-4 workers or 18-36% of 11 people who do not come to work in 1 month due to complaints of illness. The weight of the lifted product is 25-43 kg with a total lifting weight per day of 70-80 tons, the frequency of lifting is 2 times per minute with a pedestal on the shoulder, based on the Regulation of the Minister of Manpower No. 5 of 2018 concerning K3 Work Environment classifies for these conditions the maximum load allowed is 11 kg. The Recommended Weight Limit method is used to determine the level of risk of unloading, Job Strain Index to determine the level of risk of loading and unloading work activities, and Job Safety Analysis to determine the potential for work accidents. The results of the study found that the risk level of lifting activity was high risk with a Li>3 value, the risk level of loading and unloading work activities is high risk with a JSI value of 9, and the activity that has the most potential to cause work accidents is moving racks using crane hoists to the loading area. From these results, it was found that improvement proposals were the manufacture of manual conveyor aids and the use of safety tools and scheduled equipment maintenance.

Keywords - Manual Material Handling; Recommended Weight Limit; Job Strain Index; Job Safety Analysis

Abstrak. PT IJA merupakan produsen alumunium ekstrusi, data absensi operator bongkar muat pada bulan januari sampai maret 2023 setidaknya ada 2-4 pekerja atau 18-36% dari 11 orang yang tidak masuk kerja dalam 1 bulan dikarenakan keluhan sakit. Berat produk yang diangkat adalah 25-43 kg dengan total berat angkat perharinya adalah 70-80 ton, frekuensi pengangkatan adalah 2 kali permenit dengan tumpuan pada bahu, berdasarkan peraturan menteri ketenagakerjaan no 5 tahun 2018 tentang K3 lingkungan kerja mengklasifikasikan untuk kondisi tersebut beban maksimal yang diperbolehkan adalah 11 kg. Metode Recommended Weight Limit digunakan untuk menentukan tingkat risiko pengangakatan, Job Strain Index untuk menentukan tingkat risiko aktivitas pekerjaan bongkar muat, dan Job Safety Analysis untuk menentukan potensi kecelakaan kerja. Hasil penelitian didapatkan tingkat risiko aktivitas pengangkatan adalah berisiko tinggi dengan nilai Li>3, tingkat risiko aktivitas pekerjaan bongkar muat adalah berisiko tinggi dengan nilai JSI 9, dan aktivitas yang paling berpotensi menimbilkan kecelakaan kerja adalah memindahkan rak menggunakan crane hoist ke area loading. Dari hasil tersebut didapatkan usulan perbaikan adalah pembuatan alat bantu conveyor manual dan pemakaian APD dan perawatan alat terjadwal.

Kata Kunci - Manual Material Handling; Recommended Weight Limit; Job Strain Index; Job Safety Analysis

I. PENDAHULUAN

Banyaknya perusahaan yang masih mempertahankan tenaga manusia untuk melakukan pekerjaan, dalam hal ini kegiatan manual material handling yang merupakan akivitas pemindahan barang secara manual dalam waktu tertentu[1], pekerjaan tersebut tentunya menimbulkan efek bagi tenaga kerja jika dilakukan secara berlebihan dan terus menerus serta tidak di imbangi dengan pengendalian resiko pekerjaan yang tepat. Untuk itu diperlukan adanya penyesuaian penggunaan tenaga manusia dengan jenis pekerjaan. Manual material handling harus selalu mempertimbangkan aspek ergonomis agar terhindar dari kecelakaan kerja seperti "over exertion-lifting and carring" yaitu kondisi beban angkat yang berlebihan (over lifting) menyebabkan kerusakan jaringan tubuh[2]. Kecelakaan yang terjadi pada pekerjaan mengangkat ataupun manual material handling disebabkan karena strain (rasa nyeri yang berlebihan) utamanya pada area punggung. Berat beban serta frekuensi pengangkatan dengan intensitas tinggi dapat meningkatkan resiko rasa nyeri. Sehingga dapat meningkatkan resiko keluhan musculoskeletal disorder (MSDs).

PT IJA merupakan produsen produk aluminium ektrusi, pekerjaan bongkar muat masih dilakukan secara manual yang mengharuskan tenaga kerja melakukan aktivitas mengangkat produk, membungkuk, berdiri dan berjalan

Program Studi Teknik Industri, Universitas Muhammadiyah Sidoarjo, Indonesia

Program Studi Teknik Industri, Universitas Muhammadiyah Sidoarjo, Indonesia

^{*}Email Penulis Korespondensi: 181020700104@umsida.ac.id

membawa beban. Hal tersebut diduga menjadi indikasi penyebab seringnya operator tidak masuk kerja dengan alasan sakit dikarenakan beban kerja yang berlebihan dan kurang ergonomis, berdasarkan pengumpulan data absensi operator bongkar muat pada bulan januari sampai maret 2023 setidaknya ada 2-4 orang pekerja atau 18-36% dari 11 orang bagian bongkar muat yang tidak masuk kerja dalam 1 bulan dikarenakan keluhan sakit. Berdasarkan observasi awal didapatkan berat produk yang diangkat adalah 25-43 kg dengan frekuensi total berat bongkar perharinya adalah 70-80 ton, berdasarkan hasil observasi awal frekuensi pengangkatan adalah 2 kali permenit dengan posisi mengaangkat bertumpu pada bahu, berdasarkan peraturan menteri ketenagakerjaan no 5 tahun 2018 tentang K3 lingkungan kerja mengklasifikasikan untuk kondisi tersebut beban maksimal yang diperbolehkan adalah 11 kg[3]. Hal tersebut tentunya dapat menimbulkan potensi risiko buruk bagi pekerja jika tidak dilakukan tindakan perbaikan.

Berdasarkan permasalahan tersebut, penelitian ini bertujuan untuk menganalisa tingkat risiko proses manual material handling di PT IJA. Untuk mencapai tujuan tersebut diperlukan metode Recommended Weight Limit (RWL) sebagai metode untuk mengetahui kategori tingkat risiko berat beban pengangkatan dalam proses manual material handling sehingga meminimalisir potensi resiko terjadinya sakit pada pinggang (low back pain)[4], kemudian Job Strata Index (JSI) sebagai metode untuk mengetahui tingkat risiko aktivitas pekerjaan manual material handling terhadap resiko gangguan muskuloskeletal pada bagian Distal Upper Extremity (DUE) diantaranya meliputi tubuh bagian siku, pergelangan tangan, lengan bawah, dan tangan(Setiadi). Serta Job Safety Analysis (JSA) sebagai metode untuk mengidentifikasi potensi bahaya serta menilai aktivitas pekerjaan yang memiliki tingkat risiko tertinggi dan upaya pengendalian resiko kecelakaan kerja[5]

II. METODE

Terdapat 3 metode dalam penelitian ini diantaranya metode *Recommended Weight Limit* (RWL) sebagai metode dalam menentukan kategori tingkat risiko beban pengangkatan, *Job Strain Index* (JSI) sebagai metode untuk menentukan kategori tingkat risiko pekerjaan *manual materia handling*, serta *Job Safety Analysis* (JSA) sebagai metode untuk menganalisa pekerjaan yang paling berisiko menyebabkan kecelakaan kerja. Pengambilan data dilakukan di area bongkar muat gudang barang jadi PT IJA, dengan pengambilan sampel dilakukan secara langsung saa perator bekerja.

1. Recommended Weight Limit (RWL)

RWL merupakan berat beban yang dianggap aman dan tidak menimbulkan potensi cedera gangguan sakit pinggang (low back pain) bagi pekerja dalam melakukan aktivitas mengangkat dalam durasi waktu tertentu RWL dihitung berdasarkan enam variabel diantaranya[6]

Rumus RWL adalah:

$$RWL = LC \times HM \times VM \times DM \times AM \times FM \times CM$$

$$Sumber: [4][7]$$
(1)

Keterangan:

RWL : batas beban yar 8 direkomendasikan

LC : beban konstan ($load \ constant$) = 23 kg

HM : jarak horizontal (horizontal multiplier) = 25/H (2) Sumber: [8] VM : jarak vertikal (vertical multiplier) = 1-0.003(V-75) (3) Sumber: [8] DM : jarak lintasan (distance multiplier) = 0.82 + 4.5/D (4) Sumber: [8] AM : sudut putar (asymetric multiplier) = 1-0.0032A (5) Sumber: [8]

FM : frekuensi dan durasi (frequency multiplier)

CM : klasifikasi pegangan tangan (coupling multiplier)

Tabel 2.1 Coupling Multipler

T' C 1'	C	M
Tipe Coupling	V < 75 cm	V = 75 cm
Baik (Good)	1.00	1.00
Sedang (Fair)	0.95	1.00
Jelek (Poor)	0.90	0.90

Sumber : [4][9]

Lifting Index (LI) adalah estimasi sederhana terhadap resiko cedera yang diakibatkan oleh overexertion. (tarwaka) Berdasarkan berat beban dan nilai RWL, dapat ditentukan besarnya LI dengan rumus sebagai berikut.

$$LI = \frac{\text{Berat Beban}}{\text{RWL}} \le 3.0$$
 (6)
Sumber: [4][10]

Aktivitas mengangkat dengan nilai LI > 1 (moderately stressful task), akan meningkatkan resiko terhadap keluhan sakit pinggang (low back pain), oleh karena itu, maka beban kerja harus didesain sedemikian rupa seh gga nilai LI \leq 1. Untuk beban kerja dengan nilai LI >1, mengandung resiko keluhan sakit pinggang, sedangkan untuk nilai LI > 3 (highly stressful task), sudah dapat dipastikan menyebabkan terjadinya overexertion[6]

Tabel 2.2 Klasifikasi Tingkat Risiko Berdasarakan Hasil Nilai Li

Nilai Li	Tingkat Resiko	Deskripsi Perbaikan
<1	Rendah	Tidak adanya masalah dengan pekerjaan mengangkat, maka tidak diperlukan perbaikan terhadap pekerjaan, tetapi tetap terus mendapat perhatian sehingga nilai Li dipertahankan
1-3	Sedang	Ada beberapa parameter angkat, sehingga perlu dilakukan pengecekan dan redesain segera pada parameter yang menyebabkan nilai RWL tinggi. Upayakan perbaikan sehingga nilai Li ≤ 1
3	Tinggi	Terdapat banyak permasalahan dari parameter yang diangkat sehingga diperlukan pengecekan dan perbaikan sesegera mungkin secara menyeluruh terhadap parameter-parameter yang menyebabkan nilai tinggi. Upayakan perbaikan sehingga nilai Li < 1

Sumber: [6]

2. Job Strain Index (JSI)

Strain Index (SI) merupakan metode yang dikembangkan oleh J. Steven Moore dan Arun Garg pada tahun 1995 yang dimuat dalam jurnal American Industrial Hygiene Association dengan judul "The Strain Index: A proposed method to analyze jobs for risk of distal upper extremity disorders", Strain Index merupakan metode yang digunakan untuk mengevaluasi pekerjaan terhadap resiko gangguan muskuloskeletal pada bagian Distal Upper tremity (DUE) meliputi siku, lengan bawah, pergelangan tangan, dan tangan[11]. Adapun prosedur urutan dalam penerapan metode Job Strain Index adalah sebagai berikut:

- a. Mengumpulkan 6 data variabel tugas diantaranya intesity of exertion yaitu besaran usaha seorang pekerja untuk melakukan aktivitas kerja, diantaranya:
 - 1. Intensitas Penggunaan Tenaga (Intesity of Exertion)

Tabel 2.3 Data Intensitas Penggunaan Tenaga

Jenis Kegiatan	Usaha Maksimal dalam Presentase	Skala	Keterangan
Mendekati Maksimal	>80%	>7	Usaha yang diperlukan memerlukan tenaga dari punggung dan bahu
Sangat Berat	50% - 75%	6 - 7	Tenaga yang dibutuhkan berlebihan
Berat	30% - 49%	4-5	Tenaga lebih diperlukan
Cukup Berat	10% - 29%	3	Usaha diperlukan cukup besar
Ringan	<10%	<2	keadaan dengan usaha yang tidak berarti

Sumber: [12]

2. Durasi Penggunaan Tenaga (Duration of Exertion)

Untuk menghitung durasi penggunaan tenaga menggunakan rumus di bawah ini:

Setelah mendapatkan hasil penggunaan tenaga selanjutnya data akan klasifikasikan dengan tingkat persentase sesuai dengan tabel 2.4 di bawah ini.

Tabel 2.4 Data Lama Waktu Penggunaan Tenaga

Tingkatan	Duration Withing Cycle	Duration Exertion Multiplier
1	<10%	0.5
2	10% - 29%	1
3	30% - 49%	1.5
4	50% - 79%	2
5	80% - 100%	3

Sumber: [12]

2

3. Total Usaha Permenit (Effort per Minute)

Untuk mengetahui total usaha permenit, maka digunakan rumus sebagai barikut.

Setelah hasil usaha per menit didapatkan, langkah selanjutnya yaitu menentukan klasifikasinya dengan acuan tabel 2.5 di bawah ini.

Tabel 2.5 Data Total Usaha Permenit

Tingkatan	Usaha Per Menit	Usaha Per Menit Multiplier
5	> 10	3
4	15 - 19	2
3	9 - 14	1.5
2	4 - 8	1
1	< 4	0.5

Sumber: [12]

4. Posisi Tangan (Hand/Wrist Posture)

Penzaian posisi tangan dapat diklasifikasikan dalam tiga tingkatan, yaitu[12]:

- Ulnar Deviation / menuju jari kelingking
- · Flexio / menuju telapak tangan
- Extension / Menuju kearah punggung tangan

Setelah kondisi posisi tangan pekerja diketahui, selanjutnya data klasifikasikan sesuai dengan tabel 2.6 di bawah ini.

Tabel 2.6 Data Posisi Tangan

	1 au	CI 2.0 Data 1 051	si rangan	
Kategori	Eksitesi Pergelangan Tangan	Fleksi Pergelangan Tangan	Deviasi Pada Ulnar	Ulasan
Sangat Baik	0° - 10°	0° - 5°	0° - 10°	Berada pada posisi normal
Baik	11° - 25°	6° - 15°	11° - 15°	Berada pada posisi yang mendekati normal
Cukup Baik	26° - 40°	16° - 30°	16° - 30°	Berada pada posisi tidak normal
Buruk	41° - 55°	31° - 50°	11° - 25°	Berada pada posisi sangat tidak normal
Sangat Buruk	> 60°	> 50°	>25°	Berada pada posisi mendekati ekstrim

Sumber: [12]

5. Laju Kerja (Speed Of Work)

Klasifikasi laju kerja dapat dilihat pada tabel 2.7 di bawah ini:

Tabel 2.7 Data Laju Kerja

Tabel 2.7 Bata Eaju Kerja			
Tingkatan	Perbandingan MTM-1	Ulasan	
Sangat Pelan	< 80%	Laju sangat pelan	
Pelan	81% - 90%	Laju pelan	
CukupLaju	91% - 100%	Laju normal	
Laju	101% - 115%	Laj u dengan mampu menjaga laju kerja	
Sangat Laju	> 115%	Sangat laju tapi tidak bisa menjaga laju kerja	

Sumber: [12]

6. Durasi Aktivitas Kerja Per Hari (Duration Task Per Day)

Klasfisikasi durasi kerja per hari dapat dilihat pada tabel 2.8 di bawah ini.

Tabel 2.8 Data Lama Waktu Kerja Perhari

Tingkatan	Lama Waktu Kerja per Hari	DD Multip lier
5	> 8 jam	1,5
4	4 - 8 jam	1
3	2 - 4 jam	0,75
2	1 - 2 jam	0,5
1	< 1 jam	0,25

Sumber: [12]

b. Menentukan skor rating dari masing-masing variabel kerja.

c. Menentukan tingkatan nilai multiplier, yang didapat dari penentuan nilai rating variabel kerja sebelumnya. **Tabel 2.9** Tabel JSI Multiplier

Tingkatan	Intensity of Exertion (IE)	Duration of Exertion (DE)	Efforts/Minute (EM)	Hand/Wrist Posture (HWP)	Speed of Work (SW)	Duration Minute (DD)
5	Terberat (13)	80% - 100% (3)	> 20 (3)	Very Bad (3)	Very Fast (2)	= 8 (1.5)
4	Sangat Berat (9)	50% - 79% (2)	15 - 19 (2)	Bad (2)	Fast (1.5)	4 - 8 (1)
3	Berat (6)	30% - 49% (1.5)	9 - 14 (1.5)	Fair (1.5)	Fair (1)	2 - 3 (0,75)
2	Cukup Berat (3)	10% -29% (1)	4 - 8 (1)	Good (1)	Slow (1)	1 - 2 (0,5)
1	Ringan (1)	<10% (0.5)	<4 (0,5)	Very Good(1)	Very Slow (1)	< 1 (0,25)

Sumber: [12]

Berikut adalah rumusan yang untuk menghitung nilai JSI berdasarkan 2.12:

$$JSI = IE \times DE \times EM \times HWP \times SW \times DO$$

$$Sumber: [12]$$

Untuk mendapatkan hasil akhir nilai JSI, dibutuhkan tabel Job Strain Index Worksheet yaitu hasil penggabungan dan perhitungan dari enam parameter dan multiplier JSI, selanjutnya adalah mengisi tabel 2.10 dibawah ini.

Tabel 2.10 Tingkat Risiko (JSI)

Nilai	Keterangan
<3	Aktivitas kerja yang dilakukan termasuk ke dalam tingkatan yang aman
3 - 5	Aktivitas kerja yang dilakukan termasuk ke dalam tingkatan pekerjaan tidak dianjurkan
5 - 7	Aktivitas kerja yang dilakukan dapat menimbulkan cidera
>7	Aktivitas kerja yang dilakukan dalam tingkatan yang sangat berbahaya

Sumber: [12]

5

2. Job Safety Analysis (JSA)

Job Safety Analysis (JSA) digunakan untuk mendeteksi potensi bahaya yang terkait dengan pekerjaan tertentu dan untuk menetapkan langkah-langkah yang sesuai untuk mengurangi risiko yang terlibat. Penting untuk diperhatikan bahwa JSA biasanya tidak mencakup evaluasi desain atau identifikasi bahaya dalam proses yang rumit. Sebaliknya, JSA berfungsi sebagai sarana untuk menghasilkan rekomendasi berdasarkan tinjauan analisis bahaya yang lebih detail[5][13]. Adapun langkah-langkah penerapan JSA sebagai berikut.

1. Job Selection

Dalam menentukan skala prioritas analisa adalah dengan mengamati dan memilih pekerjaan dengan riwayat kecelakaan kerja yang buruk(ulkhaq). Berikut adalah beberapa hal yang dipertimbangan dalam memilih pekerjaan yang akan dianalisa:

- Frekuensi kecelakaan, pada sebuah pekerjaan dan intensitas jumlah kecelakaan berulang merupakan prioritas utama dalam JSA.
- Tingkat efek cidera penyebab kecacatan, semua aktivitas kerja yang memiliki potensi menimbulkan cidera serius masuk kedalam JSA.
- Kemungkinan potensi, meskipun dalam sebuah aktivitas pekerjaan tidak ada dalam riwayat kecelakaan kerja yang ditimbulkan, tapi aktivitas tersebut masih berpotensi menimbulkan bahaya kerja.
- 2. Membagi Pekerjaan

Membagi aktivitas pekerjaan menjadi beberapa aktivitas kerja yang lebih kecil dan detail sesuai dengan jenis pekerjaan dan prosedur kerjanya, sehingga analisa JSA bias lebih tepat dan akurat.

3. Hazard Identification / Identifikasi Bahaya

Mengidentifikasi bahaya dengan mengklasifikasikan tingkat resi yang terdiri dari dua variabel, yakni variabel *Likelihood* dan *Consequences*[14], pada tabel 2.11 merupakan skala ukur kemungkinan (*Likelihood*) dan konsekuensi (*Consequences*)

Mengklasifikasikan p4ensi/frekuensi/kemungkinan terjadinya resiko.

Tabel 2.11 Skala Ukur kemungkinan (Likehood) Secara Kualitatif

Deskripsi	Definisi
Almost	Kejadian yang dapat terjadi kapan saja
Likely	Dapat terjadi secara berkala
Moderate	Dapat terjadi pada kondisi tertentu
Unlikely	Dapat terjadi jarang
Rare	Memungkinkan tidak terjadi
	Almost Likely Moderate Unlikely

Sumber: AS/NZS 4360:2004 Risk management guideline[5]

Menentukan dampak yang 4 timbulkan dari resiko.

Tabel 2.12 Skala Ukur Consequences Secara Kualitatif

	Tabel 2.12 Skala	Okur Consequences Secara Kuantatn	
Tingkat	Penjelasan	Definisi	
1	Insignificant	Tidak cidera, kerugian materi sangat kecil	
2	Minor	Memerlukan perawatan P3K, penanganan dilakukan tanpa bantuan pihak luar, kerugian materi sedang	
3	Moderate	Memerlukan perawatan medis, penanganan membutuhkan bantuan pihak luar, kerugian materi besar	

4	Major	Cidera yang mengakibatkan cacat/hilang fungsi tubuh secara total, kerugian materi besar
5	Catasthropic	Menyebabkan kematian, kerugian materi sangat besar

Sumber: AS/NZS 4360:2004 Risk management guideline[5]

• Menetapkan peta resiko dan status resiko

Tabel 2.13 Matrik Analisis Resiko Kualitatif

		(Consequence	S		
Likelihood	Insignificant	Minor	Moderate	Major	Catasthropic	
	1	2	3	4	5	
A (Almost)	Н	Н	Е	Е	Е	
B (Likely)	M	Н	Н	Е	E	
C (Moderate)	L	M	Н	E	E	
D (Unlikely)	L	L	M	Н	E	
E (Rare)	L	L	M	Н	H	
	: Low			: High		
	: Medium			: Extren	nly High	
Sun	ber: AS/NZS 43	360.2004	Risk manage	ement ou	ideline[5]	

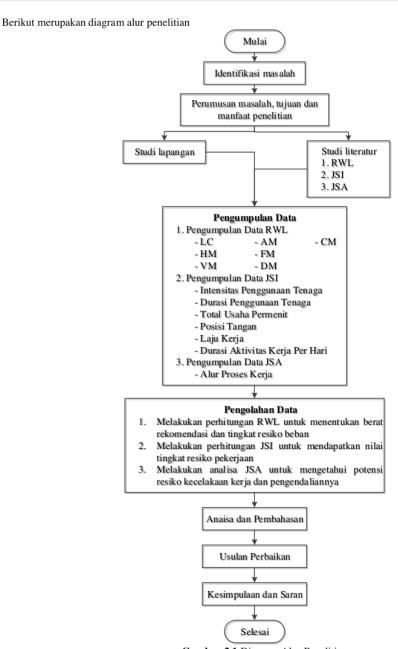
Keterangan:

: Risiko rendah, penanggulangan dengan prosedur terjadwal

: Risiko sedang, butuh pengawasan khusus dari manajemen

: Berisiko besar, butuh perhatian dari manajemen

: Sangat berisiko, butuh tindakan penanggulangan cepat dari manajemen


Berikut rumusan dalam menentukan level resiko pekerjaan.

Status Risiko = Probabilitas x Konsekuensi (10)Sumber: [5]

4. Pengembangan Solusi

Pengembangan prosedur kerja atau langkah kerja yang aman dalam meminimalisir kecelakaan kerja dan potensinya adalah tahapan terakhir dalam JSA. Berikut kemungkinan opsi yang dapat diterakan dalam JSA:

- Menemukan prosedur baru dalam melakukan suatu pekerjaan.
- Re-layout kondisi fisik (seperti tata letak area kerja, peralatan, perlengkapan).
- Memodifikasi alur proses atau prosedur kerja sebagai upaya meminimalisir potensi bahaya.
- Mengurangi intensitas atau frekuensi kerja.
- · Penggunaan APD (alat pelindung diri).

Gambar 2.1 Diagram Alur Penelitian

III. HASIL DAN PEMBAHASAN

A. Hasil Pengukuran Dan Pengolahan Data *Recommended Weight Limit*Pengukuran dilakukan kepada 11 orang laki-laki operator bagian bongkar muat gudang barang jadi saat bekerja dengan 6 variabel pengukuran, diketahui untuk aktivitas bongkar muat dilakukan 8 jam perhari dengan frekuensi pengangkatan 2 kali permenit dan berat produk 25-48 kg. sementara untuk klasifikasi *coupling* masuk kedalam kategori *poor* (jelek)

Gambar 3.1 Aktivitas Mengangkat

Tabel 3.1 Hasil Pengukuran Variabel RWL

		ranci 3.	1 Hasii Peng	gukuran var	label K W L		
Operator	Posisi	H	V	D	A	\mathbf{F}_{7}	C
1	6 Origin	25	50	101	45	2 kali/menit	Poor
1	Destination	17	151	101	0	2 kali/menit	Poor
2	Origin	27	50	103	45	2 kali/menit	Poor
2	Destination	15	153	103	0	2 kali/menit	Poor
3	Origin	23	50	96	45	2 kali/menit	Poor
3	Destination	13	146	96	0	2 kali/menit	Poor
4	Origin	27	50	103	45	2 kali/menit	Poor
4	Destination	15	153	103	0	2 kali/menit	Poor
5	Origin	25	50	100	45	2 kali/menit	Poor
3	Destination	15	150	100	0	2 kali/menit	Poor
6	Origin	27	50	103	45	2 kali/menit	Poor
O	Destination	16	153	103	0	2 kali/menit	Poor
7	Origin	23	50	99	45	2 kali/menit	Poor
/	Destination	14	149	99	0	2 kali/menit	Poor
8	Origin	24	50	101	45	2 kali/menit	Poor
0	Destination	14	151	101	0	2 kali/menit	Poor
9	Origin	23	50	101	45	2 kali/menit	Poor
9	Destination	15	151	101	0	2 kali/menit	Poor
10	Origin	23	50	95	45	2 kali/menit	Poor
10	Destination	13	145	95	0	2 kali/menit	Poor
11	Origin	24	50	99	45	2 kali/menit	Poor
11	Destination	12	149	99	0	2 kali/menit	Poor

Tabel 3.2 Tabel Hasil Pengolahan Faktor Pengali

Operator	Posisi	LC	HM	VM	DM	AM	FM	CM	Hasil Pengali
1	6 Origin	23	1.00	1.08	0.86	0.86	0.65	0.90	10.70
1	Destination	23	1.47	0.77	0.86	1.00	0.65	0.90	13.21
2	Origin	23	0.93	1.08	0.86	0.86	0.65	0.90	9.90
2	Destination	23	1.67	0.77	0.86	1.00	0.65	0.90	14.84
3	Origin	23	1.09	1.08	0.87	0.86	0.65	0.90	11.67
3	Destination	23	1.92	0.79	0.87	1.00	0.65	0.90	17.65
4	Origin	23	0.93	1.08	0.86	0.86	0.65	0.90	9.90
4	Destination	23	1.67	0.77	0.86	1.00	0.65	0.90	14.84
5	Origin	23	1.00	1.08	0.87	0.86	0.65	0.90	10.71
3	Destination	23	1.67	0.78	0.87	1.00	0.65	0.90	15.03
6	Origin	23	0.93	1.08	0.86	0.86	0.65	0.90	9.90
O	Destination	23	1.56	0.77	0.86	1.00	0.65	0.90	13.91
7	Origin	23	1.09	1.08	0.87	0.86	0.65	0.90	11.65
/	Destination	23	1.79	0.78	0.87	1.00	0.65	0.90	16.18
8	Origin	23	1.04	1.08	0.86	0.86	0.65	0.90	11.15
O	Destination	23	1.79	0.77	0.86	1.00	0.65	0.90	16.04
9	Origin	23	1.09	1.08	0.86	0.86	0.65	0.90	11.64
9	Destination	23	1.67	0.77	0.86	1.00	0.65	0.90	14.97
10	Origin	23	1.09	1.08	0.87	0.86	0.65	0.90	11.67
10	Destination	23	1.92	0.79	0.87	1.00	0.65	0.90	17.73
11	Origin	23	1.04	1.08	0.87	0.86	0.65	0.90	11.16
	Destination	23	2.08	0.78	0.87	1.00	0.65	0.90	18.87

Tabel 3.3 Hasil Perhitungan Nilai RWL Dan LI

Tuber out Train Territoring an Title Territoring								
Omematem	Beban	Nil	ai RWL	N	ilai LI			
Operator	Angkat (kg)	Origin	Destination	Origin	Destination			
1	25	10.70	13.21	2.34	1.89			
2	25	9.90	14.84	2.52	1.69			
3	25	11.67	17.65	2.14	1.42			
4	25	9.90	14.84	2.52	1.69			
5	25	10.71	15.03	2.33	1.66			
6	25	9.90	13.91	2.52	1.80			
7	25	11.65	16.18	2.15	1.55			
8	25	11.15	16.04	2.24	1.56			
9	25	11.64	14.97	2.15	1.67			
10	25	11.67	17.73	2.14	1.41			
11	25	11.16	18.87	2.24	1.32			

Berdasarkan hasil perhitungan di atas didapatkan nilai rata-rata RWL *origin* adalah **10.91 kg**, RWL *destination* adalah **15.75 kg** lalu beban tersebut adalah beban yang direkomendasikan dan dianggap aman untuk dilakukan berdasarkan metode RWL. Kemudian nilai rata-rata LI *origin* adalah **2.30**, LI *destination* adalah **1.60**. Dengan hasil tersebut dapat klasifikasikan bahwa tingkat risiko pengangkatan masuk dalam kategori berisiko sedang atau Li 1-<3, maka diperlukan tinjauan kembali dan perbaikan dibeberapa parameter angkat sehingga didapatkan nilai Li<1

B. Hasil Pengukuran Dan Pengolahan Data Job Strain Index

Pengukuran dilakukan pada aktivitas pekerjaan bongkar muat atau pemindahan produk dari area gudang barang jadi menuju ke atas truk. Dengan populasi 11 orang operator bongkar muat dengan pengukuran 6 variabel berdasarkan metode *Job Strain Index*, berikut hasil pengumpulan data pada aktivitas bongkar muat

1. Intensitas Penggunaan Tenaga (Intesity of Exertion)

Tabel 3.4 Hasil Pehitungan Cardiovasculair

	Umur	Denyut	Nadi/Jantung	g (menit)	DN Max	Heart Rate	%
()nerator	(Tahun)	DN Normal (mmHg)	DN Kerja (mmHg)	DN Istirahat (mmHg)	(mmHg)	(Pulse/Menit) (mmHg)	Cardiovasculair
1	26	84	111	68	220	194	28.29
2	30	90	115	73	220	190	28.57
3	29	89	110	71	220	191	26.17
4	35	91	122	80	220	185	30.00
5	30	89	115	79	220	190	25.53
6	31	89	116	75	220	189	28.28
7	22	85	114	72	220	198	28.38
8	28	86	108	70	220	192	25.33
9	26	83	115	75	220	194	27.59
10	31	92	120	80	220	189	28.57
11	35	90	120	81	220	185	28.06

3 Pengukuran denyut nadi selama kerja merupakan suatu metode untuk menilai cardiovasculair strain, denyut nadi akan segera berubah seirama dengan perubahan pembebanan baik yang berasal dari pembebanan mekanik, fisik maupun kimiawi[15][16]. Hasil pengukuran CVL didapatkan presentase cardiovasculair dengan hasil rata-rata 27.71%, berdasarkan tabel variabel Intesity of Exertion aktivitas bongkar muat dapat dikategorikan pekerjaan dengan usaha diperlukan cukup besar, sehingga dapat diklasifikasikan Intesity of Exertion dengan nilai multiplier 3.

2. Durasi Penggunaan Tenaga (Duration of Exertion)

Hasil pengukuran durasi penggunaan tenaga selama periode observasi sebesar 92 detik dengan total waktu observasi 120 detik, berdasarkan hasil tersebut didapatkan presentasi DE adalah 77% sehingga dapat 2 klasifikasikan *Duration of Exertion* dengan nilai *multiplier* 2

- 3. Total Usaha Permenit (Effort per Minute)
 - Hasil pengukuran total usaha permenti didapatkan jumlah total usaha selama periode observasi sebesar 10 kali dengan total waktu observasi 5 meniti kemudian diperoleh nilai EM adalah 2 kali. sehingga dapat diklasifikasikan Effort per Minute dengan nilai multiplier 0.5
- 4. Posisi Tangan (Hand/Wrist Posture)

Hasil pengamatan dan pengukuran posisi tangan pada saat melakukan aktivitas bongkar muat adalah *Flexio* / menuju telapak tangan dengan membentik sudut 28° dengan kategori cukup baik, sehingga dapat diklasifikasikan *Hand/Wrist Posture* dengan nilai *multiplier* 1.5.

- 5. Laju Kerja (Speed Of Work)
 - Berdasarkan observasi kecepatan aktivitas bongkar muat diketahui dalam durasi kurang lebih 4 jam, total produk yang dipindahkan ke truk adalah 450-500 pac lengan hasil tersebut dapat dikategorikan cukup laju, sehingga dapat diklasifikasikan *Speed Of Work* dengan nilai *multiplier* 1.
- 6. Durasi Aktivitas Kerja Per Hari (Duration Task Per Day)

Pada proses aktivitas bongkar muat dilakukan selama 8 jam perhari, yaitu mulai pukul 08.00-16.00 WIB, sehingga dapat diklasifikasikan *Duration Task Per Day* dengan nilai *multiplier* 1

Setelah didapatkan skor rating dari masing-masing variabel, langkah selanjutnya adalah perhitungan skor multiplier yang dapat di lihat pada tabel di bawah ini

Tabel 3.5 Pengolahan Skor JSI Multiplier

Z Tabel 3.5 Tengolahan 3kol 351 Wanapher								
	Intesity of	Duration	Effort per	Hand/Wrist	Speed of	Duration		
Tingkatan	Exertion	of Exertion	Minute	Posture	Work	Task Per		
	(IE)	(DE)	(EM)	(HWP)	(SW)	Day (DD)		
Exposure	Cukup	77%	2	Fair	Fair	8 jam		
Data	Berat	1170	2	7 dir	rair	o jani		
Tingkatan	2	4	1	3	3	4		
Multipliers	3	2	0.5	1.5	1	1		
Skor JSI		IE x DE x EM x HWP x SW x DO						

Berdasarkan hasil perhitungan di atas didapatkan skor JSI adalah 9, Dengzi hasil tersebut dapat klasifikasikan bahwa tingkat risiko aktivitas pekerjaan bongkar muat masuk dalam kategori aktivitas kerja yang dilakukan dalam tingkatan yang sangat berbahaya

C. Hasil Analisa Job Safety Analysis

Pada aktivitas pekerjaan bongkar muat terdapat 4 alur proses kerja yang dilalui, dimulai dari penyiapan pemindahan rak produk, proses bongkar muat, pengecekan *quantity*, dan proses yang terakhir adalah penutupan truk dengan terpal.

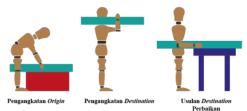
Gambar 3.2 Alur Proses Pekerjaan Bongkar Muat

Proses pemindahan rak produk dilakukan dengan menggunakan *crane hoist* dari area gudang barang jadi ke area *loading* bongkar muat. Setelah memastikan rak telah terpindahkan, kemudian dilakukan proses bongkar muat yaitu pemindahan produk dari area *loading* menuju ke atas truk yang dilakukan secara manual oleh pekerja, proses berlanjut ke proses pengecekan barang untuk memastikan jumlah dan jenis produk telah sesuai, kemudian proses selanjutnya adalah penutupan produk di atas truk dengan terpal. Berdasarkan pengamatan aktivitas kerja tersebut didapatkan analisa risiko dengan metode JSA sebagai berikut.

Tabel 3.6 Analisa Risiko Dengan Metode JSA

No	Pekerjaan	Uraian Pekerjaan	Potensi Bahaya	Konsekuensi	Peni Ris	laian iko	Tingkat Risiko	Rekomendasi
1	Pemindahan Rak Produk Menggunakan	Mengaitkan tali crane hoist ke rak profil	a. Tangan terjepit pengait crane	Luka gores pada tangan/jari, memar	L D	1	Low	Penggunaan APD (sarung tangan)
	Crane Hoist		b. Tertipa rak produk	Memar, patah tulang, gagar otak	С	3	High	Penggunaan APD (sarung tangan, helm, safety shoes)
			c. Terjatuh saat naik	Patah tulang, gagar otak	С	3	High	Penggunaan APD (sarung tangan, helm, safety shoes), pelatihan operator
		2. Memindahkan rak	a. Seling crane hoist terlepas/putus	Patah tulang, gagar otak, kematian	A	5	Extreme High	Melakukan pemerikasaan dan perawatan terjadwal
		menggunakan crane hoist ke area loading	b. Tertipa rak produk akibat seling crane terlepas/putus	Patah tulang, gagar otak, kematian	A	5	Extreme High	Peraturan penggunaan APD (sarung tangan, helm, safety shoes), pelatihan SOP untuk operator
			c. Rak produk menabrak pekerja lain	Cedera ringan, memar	Е	1	Low	Penggunaan APD (helm, safety shoes), yellow line
2	Bongkar Muat	Mengambil produk dari rak	a. Tangan terjepit produk	Luka gores pada tangan/jari, memar	D	2	Low	Penggunaan APD (sarung tangan)
			b. Kaki tertimpa produk	Memar jari kaki, cedera ringan	D	2	Low	Penggunaan APD (safety shoes)
		2. Mengangkat produk untuk dibawa ke atas truk	a. Kaki tertimpa produk	Luka gores pada tangan/kaki, memar	D	2	Low	Penggunaan APD (sarung tangan, safety shoes)

			b. Tersandung	Memar, cedera ringan	Е	1	Low	Penggunaan APD (sarung tangan, safety shoes)
		3. Meletakkan produk di atas truk	a. Tangan terjepit produk	Luka gores pada tangan/jari, memar	D	2	Low	Penggunaan APD (sarung tangan, safety shoes)
			b. Kaki tertimpa produk	Memar jari kaki, cedera ringan	D	2	Low	Penggunaan APD (sarung tangan, safety shoes)
3	Pengecekan Quantity	Melakukan scan barkode	a. Terjatuh dari tangga	Patah tulang, gagar otak	С	3	High	Penggunaan APD (helm, safety shoes)
4	Penutupan Truk dengan Terpal	Mengikat produk di atas truk	a. Jatuh dari atas truk	Patah tulang, gagar otak	С	3	High	Penggunaan APD (helm), Pemberlakuan SOP
		2. Menutup trus dengan terpal	a. Jatuh dari atas truk	Patah tulang, gagar otak	С	3	High	Penggunaan APD (helm), Pemberlakuan SOP


Berdasarkan hasil penilaian menggunakan skala ukur *likehood* (kemungkinan) dan *concequences* (konsekuensi) terhadap setiap proses aktivitas bongkar muat, didapatkan 8 aktivitas dengan tingkat risiko *Low* (risiko rendah), 5 aktivitas dengan tingkat risiko *High* (risiko tinggi) dan 2 aktivitas dengan tingkat risiko *Extreme High* (sangat berisiko). Dengan rekomendasi pengendalian potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko *Low* (risiko rendah) adalah dengan penggunaan APD (sarung tangan, safety shoes, helm), penanggulangan potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko *High* (risiko tinggi) adalah dengan penggunaan APD (sarung tangan, safety shoes, helm) dan pemberlakuan SOP kerja, dan penanggulangan potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko *Extreme High* (sangat berisiko) adalah dengan penggunaan apotensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko *Extreme High* (sangat berisiko) adalah dengan penggunaan penggunaan APD (sarung tangan, helm, safety shoes), pelatihan SOP serta melakukan pemerikasaan dan perawatan terjadwal.

D. Usulan Perbaikan

Berdasarkan hasil analisa yang didapatkan dari perhitungan menggunakan metode *recommended weight limit*, dapat diketahui hasil tingkat risiko beban berat pengangkatan masuk dalam kategori berisiko sedang atau Li 1-<3, maka diperlukan tinjauan kembali dan perbaikan dibeberapa parameter angkat sehingga didapatkan nilai Li<1. Dari hasil pengukuran variabel RWL, di usulkan perbaikan pada variabel jarak vertikal *destination* dengan penggunaan alat bantu conveyor manual sehingga jarak lintasan/*distance multiplier* dapat diperkecil dan usulan berat yang semula 25 kg diturunkan menjadi 20 kg, sehingga hasil nilai Li dapat diperbaiki. Dengan usulan penambahan alat ini juga diharapkan mampu menurunkan intensitas penggunaan tenaga (*Intesity of Exertion*) sehingga dapat menurunkan tingkat risiko pekerjaan bongkar muat di PT IJA.

Gambar 3.3 Desain Conveyor Manual

Gambar 3.4 Ilustrasi Usulan Perbaikan

Tabel 3.7 Hasil Perhitungan Nilai RWL Dan LI Usulan Perbaikan

	Beban	Ni	lai RWL	Nilai LI		
Operator	Angkat (kg)	Origin	Destination	Origin	Destination	
1	20	12.95	15.85	1.54	1.26	
2	20	11.99	17.96	1.67	1.11	
3	20	14.07	20.73	1.42	0.96	
4	20	11.99	17.96	1.67	1.11	
5	20	12.95	17.96	1.54	1.11	
6	20	11.99	16.84	1.67	1.19	
7	20	14.07	19.25	1.42	1.04	
8	20	13.48	19.25	1.48	1.04	
9	20	14.07	17.96	1.42	1.11	
10	20	14.07	20.73	1.42	0.96	
11	20	13.48	22.45	1.48	0.89	

Berdasarkan hasil perhitungan di atas didapatkan nilai rata-rata RWL *origin* perbaikan adalah **13.19 kg**, RWL *destination* perbaikan adalah **18.81 kg** yang kemudian beban tersebut adalah beban yang direkomendasikan dan dianggap aman untuk dilakukan berdasarkan metode RWL. Kemudian nilai rata-rata LI *origin* perbaikan adalah **1.52**, dan LI *destination* perbaikan adalah **1.07**. Dengan hasil tersebut dapat klasifikasikan bahwa tingkat risiko pengangkatan masuk dalam kategori berisiko sedang atau Li 1-<3, meskipun setelah dilakukan perbaikan tingkat risiko pengangkatan masih dalam kategori sedang, akan tetapi terjadi penurunan nilai Li *origin* dari **2.3** menjadi **1.52** dan Li *destination* dari **1.60** menjadi **1.07**.

IV. SIMPULAN

Berdasarkan perhitungan menggunakan metode *recommended weight limit* untuk menentukan tingkat risiko pengangkatan, nilai rata-rata LI *origin* adalah **2.30**, LI *destination* adalah **1.60**. Dengan hasil tersebut dapat klasifikasikan bahwa tingkat risiko pengangkatan masuk dalam kategori berisiko sedang atau Li 1-<3.

Lalu berdasarkan hasil perhitungan menggunakan metode *job strain index* untuk menentikan tingkat risiko aktivitas pekerjaan bongkar muat, dihasilkan skor JSI adalah 9, Dengan ha 2 tersebut dapat klasifikasikan bahwa tingkat risiko aktivitas pekerjaan bongkar muat masuk dalam kategori aktivitas kerja yang dilakukan dalam tingkatan yang sangat berbahaya

Kemudian hasil penilaian risiko kecelakaan kerja menggunakan metode job safety analysis dengan skala ukur likehood (kemungkinan) dan concequences (konsekuensi) terhadap setiap proses aktivitas bongkar muat, didapatkan 8 aktivitas dengan tingkat risiko Low (risiko rendah), 5 aktivitas dengan tingkat risiko High (risiko tinggi) dan 2 aktivitas dengan tingkat risiko Extreme High (sangat berisiko). Dengan rekomendasi pengendalian potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko Low (risiko rendah) adalah dengan penggunaan APD (sarung tangan, safety shoes, helm), penanggulangan potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko High (risiko tinggi) adalah dengan penggunaan APD (sarung tangan, safety shoes, helm) dan pemberlakuan SOP kerja, dan penanggulangan potensi kecelakaan kerja untuk aktivitas kerja dengan tingkat risiko Extreme High (sangat berisiko) adalah dengan penggunaan penggunaan APD (sarung tangan, helm, safety shoes), pelatihan SOP serta melakukan pemerikasaan dan perawatan terjadwal.

UCAPAN TERIMA KASIH

Ungkapan terima kasih yang teramat besar ditujukan kepada divisi gudang barang jadi bagian operator bongkar muat PT IJA yang menjadi tempat objek penelitian, meskipun penelitian ini masih jauh dari kata sempurna tetapi semoga dengan hasil penelitian ini dapat memberikan ilmu dan referensi bagi pihak-pihak yang membutuhkan.

REFERENSI

- A. Soleman and A. Priyadi, "Analisis Manual Material Handling Untuk Meminimalisir Terjadinya Musculoskeletal Disorder Pada Pekerja Tahu," ALE Proceeding, vol. 3, pp. 56–64, 2020.
- [2] H. N. Marjani, W. Wiediartini, and M. Y. Santoso, "REDESIGN STASIUN KERJA DENGAN PERTIMBANGAN FAKTOR ERGONOMI DI WORKSHOP PLAT SAMBUNG PADA PEKERJA PENGANGKATAN PLAT (STUDI KASUS: PERUSAHAAN MANUFAKTUR PEMBUAT BETON)," in Conference on Safety Engineering and Its Application, 2018, pp. 479–484.
- [3] "Peraturan Menteri Ketenagakerjaan Republik Indonesia Nomor 5 Tahun 2018" <u>Jdih Kemnaker</u> Di akses pada 28 Agustus 2023.
- [4] Tarwaka, Solichul HA. Bakri, and Lilik Sudiajeng, "Ergonomi untuk Keselamatan, Kesehatan Kerja dan Produktivitas," in Ergonomi untuk Keselamatan, Kesehatan Kerja dan Produktivitas, 2004th ed.Surakarta: UNIBA PRESS, 2004.
- [5] M. M. Ulkhaq, "Penilaian Risiko Keselamatan Kerja Pada Proses Pembuatan Balok Jembatan Dengan Metode Job Safety Analysis (JSA)," *Industrial Engineering Online Journal*, vol. 6, no. 4, 2018.
- [6] M. F. Hidayah, "IDENTIFIKASI TINGKAT RISIKO BEBAN KERJA PADA PENGANGKATAN HASIL REBUSAN KEPITING DENGAN METODE RECOMMENDED WEIGHT LIMIT (RWL) DAN LIFTING INDEX (LI) PADA IKM MELATI MAKASSAR," 2020.
- [7] M. Noviandy, "Analisis Pengangkatan Cpu Di Wm Game Center dengan Metode Recommended Weight Limit (Rwl) Dan Chaffin Anderson," *Jurnal Ilmiah Teknik Industri*, vol. 7, no. 3, 2019.
- [8] R. A. Ratriwardhani, "Analisa Aktivitas Pengangkatan dengan Metode Recommended Weight Limit (RWL)," Medical Technology and Public Health Journal, vol. 3, no. 1, pp. 94–100, 2019.
- [9] T. Harini, "Analisis Perbaikan Prosedur Kerja Menggunakan Metode Nordic Body Map, Niosh Lifting Equation dan Job Safety Analysis di Pt Sahabat Mewah dan Makmur," SIJIE Scientific Journal of Industrial Engineering, vol. 3, no. 1, pp. 1–7, 2022.
- [10] I. Y. Anggraini, M. Sulaiman, and A. A. Karim, "ANALISIS PENGANGKATAN BEBAN PADA PROSES PENCETAKAN TAHU MENGGUNAKAN METODE RECOMMENDED WEIGHT LIMIT (RWL) DI UMKM X KOTA BALIKPAPAN," Journal of Industrial Innovation and Safety Engineering (JINSENG), vol. 1, no. 1, pp. 10–16, 2023.
- [11] N. Setiadi, E. Achiraeniwati, and Y. S. Rejeki, "Pengukuran Resiko Kerja pada Bagian Pengemasan Manual Menggunakan Metode Job Strain Index (JSI)," *Prosiding Teknik Industri*, pp. 247–252, 2019.
- [12] R. Patradhiani, B. Nopriansyah, and M. Hastarina, "Identifikasi Postur Kerja Pengrajin Batik Jumputan Dengan Metode Job Strain Index (JSI)," *Journal of Industrial & Quality Engineering p-ISSN*, vol. 2303, p. 2715, 2021.
- [13] A. Permana and A. J. Nugroho, "Job Safety Analysis (JSA) Pada Area Workshop PT Widya Inovasi Indonesia," *Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer*, vol. 2, no. 1, pp. 63–73, 2022.
- [14] B. P. Novitasari and S. Saptadi, "Analisis Risiko Kecelakaan Kerja Dengan Metode Job Safety Analysis Pada Dermaga Pelabuhan Dalam Pt. Pelabuhan Indonesia Iii Cabang Tanjung Emas," *Industrial Engineering Online Journal*, vol. 7, no. 3, 2018.
- [15] N. Wisudawati and M. Djana, "Analisis Posisi Kerja Pada Proses Pencetakan Kerajinan Tembikar Menggunakan Metode Niosh," *Integrasi: Jurnal Ilmiah Teknik Industri*, vol. 3, no. 1, pp. 26–34, 2018.
- [16] R. B. Jakaria and B. I. Putra, "Buku ajar mata kuliah psikologi industri," *Umsida Press*, pp. 1–119, 2020.

Conflict of Interest Statement:

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

$Artikel_DAVID_CEK_PLAGIASI.pdf$

ORIGINA	LITY REPORT				
SIMILA	3% 13% INTERNET SOU	RCES PUB	% LICATIONS	6% STUDENT PAPERS	
PRIMAR	SOURCES				
1	eprints.ums.ac.id Internet Source			3) %
2	ojs.unikom.ac.id Internet Source			2) %
3	www.scribd.com Internet Source			2) %
4	123dok.com Internet Source			1	%
5	ejournal3.undip.ac.	id		1	%
6	www.diva-portal.or	g		1	%
7	repository.umpalor	oo.ac.id		1	%
8	"Technology-Enable Springer Science ar 2022 Publication				%

ksmith2.teammetro.net

1 %

www.researchgate.net
Internet Source

%

Exclude quotes On Exclude bibliography On

Exclude matches

< 1%